遼寧省大連二十四中2020屆高三數(shù)學(xué)第一次模擬測試試題理含解析_第1頁
遼寧省大連二十四中2020屆高三數(shù)學(xué)第一次模擬測試試題理含解析_第2頁
遼寧省大連二十四中2020屆高三數(shù)學(xué)第一次模擬測試試題理含解析_第3頁
遼寧省大連二十四中2020屆高三數(shù)學(xué)第一次模擬測試試題理含解析_第4頁
遼寧省大連二十四中2020屆高三數(shù)學(xué)第一次模擬測試試題理含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、遼寧省大連二十四中2020屆高三數(shù)學(xué)第一次模擬測試試題 理(含解析)一、選擇題(共12小題).1.若集合M1,3,N1,3,5,則滿足MXN的集合X的個(gè)數(shù)為()A. 1B. 2C. 3D. 4【答案】D【解析】可以是共4個(gè),選D.2.復(fù)數(shù)為純虛數(shù),則( )A. iB. 2iC. 2iD. i【答案】B【解析】【分析】復(fù)數(shù)為純虛數(shù),則實(shí)部為0,虛部不為0,求出,即得.【詳解】為純虛數(shù),解得. .故選:.【點(diǎn)睛】本題考查復(fù)數(shù)的分類,屬于基礎(chǔ)題.3.下列四個(gè)結(jié)論中正確的個(gè)數(shù)是(1)對(duì)于命題使得,則都有;(2)已知,則 (3)已知回歸直線的斜率的估計(jì)值是2,樣本點(diǎn)的中心為(4,5),則回歸直線方程為;

2、(4)“”是“”的充分不必要條件.A. 1B. 2C. 3D. 4【答案】C【解析】【分析】由題意,(1)中,根據(jù)全稱命題與存在性命題的關(guān)系,即可判定是正確的;(2)中,根據(jù)正態(tài)分布曲線的性質(zhì),即可判定是正確的;(3)中,由回歸直線方程的性質(zhì)和直線的點(diǎn)斜式方程,即可判定是正確;(4)中,基本不等式和充要條件的判定方法,即可判定【詳解】由題意,(1)中,根據(jù)全稱命題與存在性命題的關(guān)系,可知命題使得,則都有,是錯(cuò)誤的;(2)中,已知,正態(tài)分布曲線的性質(zhì),可知其對(duì)稱軸的方程為,所以 是正確的;(3)中,回歸直線的斜率的估計(jì)值是2,樣本點(diǎn)的中心為(4,5),由回歸直線方程的性質(zhì)和直線的點(diǎn)斜式方程,可得

3、回歸直線方程為是正確;(4)中,當(dāng)時(shí),可得成立,當(dāng)時(shí),只需滿足,所以“”是“”成立的充分不必要條件【點(diǎn)睛】本題主要考查了命題的真假判定及應(yīng)用,其中解答中熟記含有量詞的否定、正態(tài)分布曲線的性質(zhì)、回歸直線方程的性質(zhì),以及基本不等式的應(yīng)用等知識(shí)點(diǎn)的應(yīng)用,逐項(xiàng)判定是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題4.公差不為零的等差數(shù)列an中,a1+a2+a5=13,且a1、a2、a5成等比數(shù)列,則數(shù)列an的公差等于( )A. 1B. 2C. 3D. 4【答案】B【解析】【分析】設(shè)數(shù)列的公差為.由,成等比數(shù)列,列關(guān)于的方程組,即求公差.【詳解】設(shè)數(shù)列的公差為,.成等比數(shù)列,解可得.故選:.【

4、點(diǎn)睛】本題考查等差數(shù)列基本量的計(jì)算,屬于基礎(chǔ)題.5.從裝有除顏色外完全相同的3個(gè)白球和個(gè)黑球的布袋中隨機(jī)摸取一球,有放回的摸取5次,設(shè)摸得白球數(shù)為,已知,則A. B. C. D. 【答案】B【解析】【分析】由題意知,由,知,由此能求出【詳解】由題意知,解得,故選:B【點(diǎn)睛】本題考查離散型隨機(jī)變量的方差的求法,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意二項(xiàng)分布的靈活運(yùn)用6.如圖,在中,是上一點(diǎn),若,則實(shí)數(shù)的值為( )A. B. C. D. 【答案】C【解析】【分析】由題意,可根據(jù)向量運(yùn)算法則得到(1m),從而由向量分解的唯一性得出關(guān)于t的方程,求出t的值.【詳解】由題意及圖,又,所以,(1m),又t,所以

5、,解得m,t,故選C【點(diǎn)睛】本題考查平面向量基本定理,根據(jù)分解的唯一性得到所求參數(shù)的方程是解答本題的關(guān)鍵,本題屬于基礎(chǔ)題.7.已知函數(shù),將的圖象上的所有點(diǎn)的橫坐標(biāo)縮短到原來的,縱坐標(biāo)保持不變;再把所得圖象向上平移個(gè)單位長度,得到函數(shù)的圖象,若,則的值可能為( )A. B. C. D. 【答案】C【解析】【分析】利用二倍角公式與輔助角公式將函數(shù)的解析式化簡,然后利用圖象變換規(guī)律得出函數(shù)的解析式為,可得函數(shù)的值域?yàn)椋Y(jié)合條件,可得出、均為函數(shù)的最大值,于是得出為函數(shù)最小正周期的整數(shù)倍,由此可得出正確選項(xiàng).【詳解】函數(shù),將函數(shù)的圖象上的所有點(diǎn)的橫坐標(biāo)縮短到原來的倍,得的圖象;再把所得圖象向上平移個(gè)單

6、位,得函數(shù)的圖象,易知函數(shù)的值域?yàn)?若,則且,均為函數(shù)的最大值,由,解得;其中、是三角函數(shù)最高點(diǎn)的橫坐標(biāo),的值為函數(shù)的最小正周期的整數(shù)倍,且故選C【點(diǎn)睛】本題考查三角函數(shù)圖象變換,同時(shí)也考查了正弦型函數(shù)與周期相關(guān)的問題,解題的關(guān)鍵在于確定、均為函數(shù)的最大值,考查分析問題和解決問題的能力,屬于中等題.8.數(shù)列an,滿足對(duì)任意的nN+,均有an+an+1+an+2為定值.若a7=2,a9=3,a98=4,則數(shù)列an的前100項(xiàng)的和S100=( )A. 132B. 299C. 68D. 99【答案】B【解析】【分析】由為定值,可得,則是以3為周期的數(shù)列,求出,即求.【詳解】對(duì)任意的,均有為定值,故,

7、是以3為周期的數(shù)列,故,.故選:.【點(diǎn)睛】本題考查周期數(shù)列求和,屬于中檔題.9.在直角坐標(biāo)系中,已知A(1,0),B(4,0),若直線x+my1=0上存在點(diǎn)P,使得|PA|=2|PB|,則正實(shí)數(shù)m的最小值是( )A. B. 3C. D. 【答案】D【解析】【分析】設(shè)點(diǎn),由,得關(guān)于的方程.由題意,該方程有解,則,求出正實(shí)數(shù)m的取值范圍,即求正實(shí)數(shù)m的最小值.【詳解】由題意,設(shè)點(diǎn).,即,整理得,則,解得或.故選:.【點(diǎn)睛】本題考查直線與方程,考查平面內(nèi)兩點(diǎn)間距離公式,屬于中檔題.10.三棱柱中,底面邊長和側(cè)棱長都相等,則異面直線與所成角的余弦值為( )A. B. C. D. 【答案】B【解析】【分

8、析】設(shè),根據(jù)向量線性運(yùn)算法則可表示出和;分別求解出和,根據(jù)向量夾角的求解方法求得,即可得所求角的余弦值.【詳解】設(shè)棱長為1,由題意得:,又即異面直線與所成角的余弦值為:本題正確選項(xiàng):【點(diǎn)睛】本題考查異面直線所成角的求解,關(guān)鍵是能夠通過向量的線性運(yùn)算、數(shù)量積運(yùn)算將問題轉(zhuǎn)化為向量夾角的求解問題.11.已知雙曲線,過原點(diǎn)作一條傾斜角為直線分別交雙曲線左、右兩支P,Q兩點(diǎn),以線段PQ為直徑的圓過右焦點(diǎn)F,則雙曲線離心率為A. B. C. 2D. 【答案】B【解析】【分析】求得直線的方程,聯(lián)立直線的方程和雙曲線的方程,求得兩點(diǎn)坐標(biāo)的關(guān)系,根據(jù)列方程,化簡后求得離心率.【詳解】設(shè),依題意直線的方程為,代入

9、雙曲線方程并化簡得,故 ,設(shè)焦點(diǎn)坐標(biāo)為,由于以為直徑的圓經(jīng)過點(diǎn),故,即,即,即,兩邊除以得,解得.故,故選B.【點(diǎn)睛】本小題主要考查直線和雙曲線的交點(diǎn),考查圓的直徑有關(guān)的幾何性質(zhì),考查運(yùn)算求解能力,屬于中檔題.12.已知函數(shù)在上都存在導(dǎo)函數(shù),對(duì)于任意的實(shí)數(shù)都有,當(dāng)時(shí),若,則實(shí)數(shù)的取值范圍是( )A. B. C. D. 【答案】B【解析】【分析】先構(gòu)造函數(shù),再利用函數(shù)奇偶性與單調(diào)性化簡不等式,解得結(jié)果.【詳解】令,則當(dāng)時(shí),又,所以為偶函數(shù), 從而等價(jià)于,因此選B【點(diǎn)睛】本題考查利用函數(shù)奇偶性與單調(diào)性求解不等式,考查綜合分析求解能力,屬中檔題.二、填空題(共4小題)13.已知函數(shù)f(x)=axln

10、xbx(a,bR)在點(diǎn)(e,f(e)處的切線方程為y=3xe,則a+b=_.【答案】0【解析】【分析】由題意,列方程組可求,即求.【詳解】在點(diǎn)處的切線方程為,代入得.又.聯(lián)立解得:.故答案為:0.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,屬于基礎(chǔ)題.14.設(shè)Sn為數(shù)列an的前n項(xiàng)和,若an0,a1=1,且2Sn=an(an+t),nN*,則S10=_.【答案】55【解析】【分析】由求出.由,可得,兩式相減,可得數(shù)列是以1為首項(xiàng),1為公差的等差數(shù)列,即求.【詳解】由題意,當(dāng)n=1時(shí),當(dāng)時(shí),由,可得,兩式相減,可得,整理得,即,數(shù)列是以1為首項(xiàng),1為公差等差數(shù)列,.故答案為:55.【點(diǎn)睛】本題考查求數(shù)列的前

11、項(xiàng)和,屬于基礎(chǔ)題.15.已知拋物線C:y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,P為C上一點(diǎn),PQ垂直l于點(diǎn)Q,M,N分別為PQ,PF的中點(diǎn),MN與x軸相交于點(diǎn)R,若NRF=60,則|FR|等于_.【答案】2【解析】【分析】由題意知:,.由NRF=60,可得為等邊三角形,MFPQ,可得F為HR的中點(diǎn),即求.【詳解】不妨設(shè)點(diǎn)P在第一象限,如圖所示,連接MF,QF.拋物線C:y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,P為C上一點(diǎn),.M,N分別為PQ,PF的中點(diǎn),PQ垂直l于點(diǎn)Q,PQ/OR,NRF=60,為等邊三角形,MFPQ,易知四邊形和四邊形都是平行四邊形,F(xiàn)為HR的中點(diǎn),故答案為:2.【點(diǎn)睛】本題主要考查拋物線

12、的定義,屬于基礎(chǔ)題.16.已知一個(gè)四面體的每個(gè)頂點(diǎn)都在表面積為的球的表面上,且,則_【答案】【解析】由題意可得,該四面體的四個(gè)頂點(diǎn)位于一個(gè)長方體的四個(gè)頂點(diǎn)上,設(shè)長方體的長寬高為,由題意可得:,據(jù)此可得:,則球的表面積:,結(jié)合解得:.點(diǎn)睛:與球有關(guān)的組合體問題,一種是內(nèi)切,一種是外接解題時(shí)要認(rèn)真分析圖形,明確切點(diǎn)和接點(diǎn)的位置,確定有關(guān)元素間的數(shù)量關(guān)系,并作出合適的截面圖,如球內(nèi)切于正方體,切點(diǎn)為正方體各個(gè)面的中心,正方體的棱長等于球的直徑;球外接于正方體,正方體的頂點(diǎn)均在球面上,正方體的體對(duì)角線長等于球的直徑.三、解答題(共5小題,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟.)17.如圖,

13、在中,的角平分線與交于點(diǎn),.()求;()求的面積.【答案】();().【解析】試題分析:()在中,由余弦定理得,由正弦定理得,可得解;()由()可知,進(jìn)而得,在中,由正弦定理得,所以的面積即可得解.試題解析:()在中,由余弦定理得 ,所以,由正弦定理得,所以.()由()可知.在中, .在中,由正弦定理得,所以.所以的面積.18.如圖,在四棱錐中,底面為矩形,側(cè)面底面,為棱的中點(diǎn),為棱上任意一點(diǎn),且不與點(diǎn)、點(diǎn)重合(1)求證:平面平面;(2)是否存在點(diǎn)使得平面與平面所成的角的余弦值為?若存在,求出點(diǎn)的位置;若不存在,請說明理由【答案】(1)證明見解析 (2)存在,為中點(diǎn)【解析】【分析】(1)證明面

14、,即證明平面平面;(2)以為坐標(biāo)原點(diǎn),為軸正方向,為軸正方向,為軸正方向,建立空間直角坐標(biāo)系利用向量方法得,解得,所以為中點(diǎn)【詳解】(1)由于為中點(diǎn),又,故,所以為直角三角形且,即又因?yàn)槊?,面面,面面,故面,又面,所以面面?)由(1)知面,又四邊形為矩形,則兩兩垂直以為坐標(biāo)原點(diǎn),為軸正方向,為軸正方向,為軸正方向,建立空間直角坐標(biāo)系則,設(shè),則,設(shè)平面的法向量為,則有,令,則,則平面的一個(gè)法向量為,同理可得平面的一個(gè)法向量為,設(shè)平面與平面所成角為,則由題意可得,解得,所以點(diǎn)為中點(diǎn)【點(diǎn)睛】本題主要考查空間幾何位置關(guān)系的證明,考查空間二面角的應(yīng)用,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.19.某超市

15、在節(jié)日期間進(jìn)行有獎(jiǎng)促銷,規(guī)定凡在該超市購物滿400元的顧客,均可獲得一次摸獎(jiǎng)機(jī)會(huì).摸獎(jiǎng)規(guī)則如下:獎(jiǎng)盒中放有除顏色不同外其余完全相同的4個(gè)球(紅、黃、黑、白).顧客不放回的每次摸出1個(gè)球,若摸到黑球則摸獎(jiǎng)停止,否則就繼續(xù)摸球.按規(guī)定摸到紅球獎(jiǎng)勵(lì)20元,摸到白球或黃球獎(jiǎng)勵(lì)10元,摸到黑球不獎(jiǎng)勵(lì).(1)求1名顧客摸球2次摸獎(jiǎng)停止的概率;(2)記X為1名顧客摸獎(jiǎng)獲得的獎(jiǎng)金數(shù)額,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.【答案】(1);(2)20.【解析】【分析】(1)1名顧客摸球2次摸獎(jiǎng)停止,說明第一次是從紅球、黃球、白球中摸一球,第二次摸的是黑球,即求概率;(2)的可能取值為:0,10,20,30,40分別求

16、出取各個(gè)值時(shí)的概率,即可求出分布列和數(shù)學(xué)期望.【詳解】(1)1名顧客摸球2次摸獎(jiǎng)停止,說明第一次是從紅球、黃球、白球中摸一球,第二次摸的是黑球,所以1名顧客摸球2次摸獎(jiǎng)停止的概率(2)的可能取值為:0,10,20,30,40,隨機(jī)變量X的分布列為: X 0 10 20 30 40 P 數(shù)學(xué)期望.【點(diǎn)睛】本題主要考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望,屬于中檔題.20.已知橢圓,點(diǎn),點(diǎn)滿足(其中為坐標(biāo)原點(diǎn)),點(diǎn)在橢圓上.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)橢圓的右焦點(diǎn)為,若不經(jīng)過點(diǎn)的直線與橢圓交于兩點(diǎn).且與圓相切.的周長是否為定值?若是,求出定值;若不是,請說明理由.【答案】(1)(2)是,【解析】【

17、分析】(1)設(shè),根據(jù)條件可求出的坐標(biāo),再利用在橢圓上,代入橢圓方程求出即可;(2)設(shè)運(yùn)用勾股定理和點(diǎn)滿足橢圓方程,求出,,再利用焦半徑公式表示出,進(jìn)而求出周長為定值【詳解】(1)設(shè),因?yàn)?即則,即,因?yàn)榫谏?代入得,解得,所以橢圓的方程為; (2)由(1)得,作出示意圖,設(shè)切點(diǎn)為,則,同理即,所以,又,則的周長,所以周長為定值.【點(diǎn)睛】標(biāo)準(zhǔn)方程的求解,橢圓中的定值問題,考查焦半徑公式的運(yùn)用,考查邏輯推理能力和運(yùn)算求解能力,難度較難.21.已知函數(shù).(1)若對(duì)任意x0,f(x)0恒成立,求實(shí)數(shù)a的取值范圍;(2)若函數(shù)f(x)有兩個(gè)不同的零點(diǎn)x1,x2(x1x2),證明:.【答案】(1);(2

18、)證明見解析.【解析】【分析】(1)求出,判斷函數(shù)的單調(diào)性,求出函數(shù)的最大值,即求的范圍;(2)由(1)可知, .對(duì)分和兩種情況討論,構(gòu)造函數(shù),利用放縮法和基本不等式證明結(jié)論【詳解】(1)由,得.令.當(dāng)時(shí),;當(dāng)時(shí),;在上單調(diào)遞增,在上單調(diào)遞減,.對(duì)任意恒成立,.(2)證明:由(1)可知,在上單調(diào)遞增,在上單調(diào)遞減,.若,則,令在上單調(diào)遞增,.又,在上單調(diào)遞減,.若,則顯然成立綜上,.又以上兩式左右兩端分別相加,得,即,所以.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)解決不等式恒成立問題,利用導(dǎo)數(shù)證明不等式,屬于難題.請考生在22、23兩題中任選一題作答,如果多做,則按所做的第一題計(jì)分.選修4-4:極坐標(biāo)與參數(shù)方程22.在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為;直線l的參數(shù)方程為(t為參數(shù)).直線l與曲線C分別交于M,N兩點(diǎn).(1)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;(2)若點(diǎn)P的極坐標(biāo)為,求的值.【答案】(1),;(2)2.【解析】【分析】(1)由得,求出曲線的直角坐標(biāo)方程.由直線的參數(shù)方程消去參數(shù),即求直線的普通方程;(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論