高數(shù)競賽練習_第1頁
高數(shù)競賽練習_第2頁
高數(shù)競賽練習_第3頁
高數(shù)競賽練習_第4頁
高數(shù)競賽練習_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

1、1.2.3.4.5.6.7.8.9.高數(shù)競賽練習試卷(一)1,1 +telim T 7 21te-arcta n-求極限兀t。tan(sin x)-sin(tan x) lim求極限 tT0tan X sin X設f(x)具有二階連續(xù)導數(shù),且ofWZf(o)=f(o)= 0 t是曲線 y=f(x)上點 xf(t)lim求 Ttf(x)。(X, f(x)處的切線在X軸的截距,設 f(x)在0,址)二階可導,且 f(0) = 1f(0) 1( X() f x( ),x:(.求證: f (X) ex。231 y(Jdx + J ydx + J y dx + J y dx ) f 已知tanx2F(x

2、)=f f (tx2)dt 設,其中3Txln(sin x)dx計算0。4 dx = 11-y4,求X _ f (y)的表達式。f(X)為連續(xù)函數(shù),求F(X),并討論F (X)的連續(xù)性。fb1I(0)t珂與直線y=f(1)及設f(X)連續(xù)可導,證明: 設非負函數(shù)f(x)在0,1上連續(xù),且單調(diào)上升,x=t圍成圖形的面積為S(t),y = f(x)與直線y=f(o)及x=t圍成圖形的面積為 S2(t)證明:存在唯一的(,1),使得5(0 2(。t取何值時兩部分面積之和取最小值?10.求函數(shù)豹=xyz + 7x2 +在平面兀:x-yy F -恵在點Pg-1 )處沿直線 + 2zT=0上的投影直線1方

3、向的方向?qū)?shù)。1 ZZ 畤rV,證明級數(shù)心mm +n收斂.J f (y)cos X 兀 y dx +f(y)sinx-ldyACBL: 112. 計算曲線積分AL,2)與點B(3兀,4)的線段AB之下方的任意路線,且該路線與線段 的面積為1, f(x)是連續(xù)可導的函數(shù).13. 設 f(x),g(x)可微,且 z = yf(xy)dx +xg(xy)dy. 若存在 u,使 du =z,求 f(x)-g(x); 若 f(x) =F(x),求 u,使 z=du .,其中ACB為連結(jié)點AB所圍圖形14.設r廠(1)=3f(u)在H,咫)上有連續(xù)的二階導數(shù),彳二一1 ,2,且函數(shù)2 2 2 2 =(x

4、+y + z )f (X2+z)滿足:2exCO+ 2cz=0,求 f(u))上的最小值。15.已知當 x0時,2(1+x) f (于(1、n 4 ln 丿(+1 xx)gx) f (x)有1L-Z g !- 41oI = JJ 2 f ( X, y, z) X d yd z (16.計算 If (0) =g(0)=0,證明:f, xd z3x ( 3f , x) y z其 丿、f( X, y,為連續(xù)函數(shù),工為平面x+y-z+5=0在第川象限部分的上側(cè)。高數(shù)競賽練習試卷(二)Xnx lim(焉 H Xn) =0Pm=0一.已知數(shù)列,滿足n書 ),證明:n* na =0- ,且b H 0,求常數(shù)

5、 mf(x) sinx三. 設 f(x)在(一1,1)內(nèi)有 f (X) 0,且 Tf (X) 3xX-2四. 試問:方程e2=x(x -3)總共有幾個實根.一、01lim Jf f (xdx五. 設函數(shù)f(x)在1連續(xù)且非負,證明fVO六. 設函數(shù)f(X)在1,2 上連續(xù),在(h 2內(nèi)可微,且廠(X )H 0lirntan(tanx) -sin(sin x) -btanz(sinx) 二.設巴I7=2,證明在理 f(x)a, b(一1,11內(nèi)有證明存在,*(1,2 使得:2七.設D是曲線y=2x X與九.十.D1和D2兩D1的周長以x軸圍成的平面圖形,直線把D分成 部分,若D1的面積S與D2的

6、面積S之比S = S2二1 = 7,求平面圖形 及D1繞y軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積.-be設shx shy h,計算積分J。ydx.c f(x)=送 jnx2e*x求函數(shù)nrn的定義域,并證明f(X)在定義域內(nèi)有界.設L:x=x(t), y = y(t)( 00中任意光滑閉曲面,(r =Jx2+y2+z2)x2+y2= 23(0,0)S圍成區(qū)域有連續(xù)的d xH仃 Jx# 芝 d zy-弟,求(r)其中L是包圍原點函數(shù)u數(shù)滿足1 1 1十五.計算 VVf0f(y,z)g(z,x)dxdydzrif(y,z)冷 0 其中I0rig(z,xto(y,z)迂 D1(y,z)D1D1:0y1,0z1,

7、 y-z(Z,瀘 Di(Z, X)誌 Di14D2 :0x1,0z1, zx| !4高數(shù)競賽練習試卷(三)、填空題1、已知f(x)在(一X +a乜)內(nèi)可導,且xm)2JT1) a =2、3、設函數(shù)y =y(x)是由x+ y-3axy = 0( a。)確定,則x取x設圓錐面的頂點在原點,且三個坐標軸的正半軸都在其上,則圓錐面的方程為 O4、已知y“ +(x+e y)(y) =0,則方程的通解為 c送Un5、 已知級數(shù)n的一般項Un與前n項的和Sn有如下關系:22Sn 2u nSn un ( n 工2 )且 5=2C nf(X)= S 務6、設n#n ( 0xW1),則 f(X)+ f(1x) +

8、 lnx dn(1x)=7、z = Jx2 +y2 -2x-4y+9 +Jx2 +y2 -6x + 2y+118 、設C是由z=xy , x+y + z = 1與z = 0圍成的區(qū)域,則二、設函數(shù)f (x)滿足fi,且對X二1時,有l(wèi)im f (x)lim f (x) 2n(n+1)四、證明:內(nèi)切于一給定正方形的所有橢圓中,以圓的周長為最大。2兀u = f f (r cos,r sin9) d9-o,且五、設f(x,y)有二階連續(xù)偏導數(shù),22 兀 Cd uf(rcos0,rsin 0)d0 crdr02兀點2cr2f (rcos日,rsi n&)d+ fi2 =dr2 dr的值。z= (x2七

9、、rf(x)在口,+處)上有連續(xù)的二階導數(shù),-2 r-2C Z C z c += 0 2、八2.2、-2-2U)f(X + y)滿足孤 今5=0,且二元函數(shù)f(x)在1, +切的fj yz(y - z)dydz + xz(z - x)dzdx + xy(x - y) dxdy 計算曲面積分 I,求其中:E是曲面z = J4Rx-x2r八、設區(qū)域D為x61165,3,2 ,2._y2(x-)+ y =1y ( R呂1)在柱面 2之內(nèi)部分的上側(cè)。-1,證明蘭 JJsin(x2 +y2)3dxdy 蘭2 n5an 二嚴(0)總 an+n!,證明級數(shù) 0ana2收斂,并求其和。f(X)=2九、設1 -

10、X-Xf Jx2 + y2dx + yxy+1 n(x + Jx2 + y2) dy十、計算曲線積分其中L是曲線 y = Jx +1 從點 A(1,2)到點 C1)的部分。出師表兩漢:諸葛亮先帝創(chuàng)業(yè)未半而中道崩殂,今天下三分,益州疲弊,此誠危急存亡之秋也。然侍衛(wèi)之 臣不懈于內(nèi),忠志之士忘身于外者,蓋追先帝之殊遇,欲報之于陛下也。誠宜開張圣聽, 以光先帝遺德,恢弘志士之氣,不宜妄自菲薄,引喻失義,以塞忠諫之路也。宮中府中,俱為一體;陟罰臧否,不宜異同。若有作奸犯科及為忠善者,宜付有司論 其刑賞,以昭陛下平明之理;不宜偏私,使內(nèi)外異法也。侍中、侍郎郭攸之、費祎、董允等,此皆良實,志慮忠純,是以先帝

11、簡拔以遺陛下: 愚以為宮中之事,事無大小,悉以咨之,然后施行,必能裨補闕漏,有所廣益。能”,是以眾議舉寵為將軍向?qū)?,性行淑均,曉暢軍事,試用于昔日,先帝稱之曰 督:愚以為營中之事,悉以咨之,必能使行陣和睦,優(yōu)劣得所。親賢臣,遠小人,此先漢所以興隆也;親小人,遠賢臣,此后漢所以傾頹也。先帝在 時,每與臣論此事,未嘗不嘆息痛恨于桓、靈也。侍中、尚書、長史、參軍,此悉貞良死 節(jié)之臣,愿陛下親之、信之,則漢室之隆,可計日而待也臣本布衣,躬耕于南陽,茍全性命于亂世,不求聞達于諸侯。先帝不以臣卑鄙,猥自 枉屈,三顧臣于草廬之中,咨臣以當世之事,由是感激,遂許先帝以驅(qū)馳。后值傾覆,受 任于敗軍之際,奉命于危難之間,爾來二十有一年矣。先帝知臣謹慎,故臨崩寄臣以大事也。受命以來,夙夜憂嘆,恐托付不效,以傷先帝 之明;故五月渡瀘,深入不毛。今南方已定,兵甲已

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論