版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、計(jì)算方法試題參考一計(jì)算及推導(dǎo)(5*8)1已知,試確定近似的有效數(shù)字位數(shù)。2有效數(shù),試確定的相對誤差限。3已知,試計(jì)算差商4給出擬合三點(diǎn)和的直線方程。5推導(dǎo)中矩形求積公式6試證明插值型求積公式的代數(shù)精確度至少是n次。7已知非線性方程在區(qū)間內(nèi)有一實(shí)根,試寫出該實(shí)根的牛頓迭代公式。8用三角分解法求解線性方程組二給出下列函數(shù)值表89420.479430.564640.644220.71736要用二次插值多項(xiàng)式計(jì)算的近似值,試選擇合適的插值節(jié)點(diǎn)進(jìn)行計(jì)算,并說明所選用節(jié)點(diǎn)依據(jù)。(保留5位有效數(shù)字)(12分)三 已知方程在內(nèi)有一實(shí)根(1)給出求該實(shí)根的一個迭代公式,試之對
2、任意的初始近似迭代法都收斂,并證明其收斂性。(2)試用構(gòu)造的迭代公式計(jì)算的近似值,要求。四 設(shè)有方程組(1) 當(dāng)參數(shù)a滿足什么條件時,雅可比方法對任意的初始向量都收斂。(2) 寫出與雅可比方法對應(yīng)的高斯賽德爾迭代公式。(12分)五用歐拉預(yù)估校正法求解初值問題取h=0.1,小數(shù)點(diǎn)后保留5位。(8分)六證明求解初值問題 的如下單步法是二階方法。(10分)七試證明復(fù)化梯形求積公式對任意多的積分節(jié)點(diǎn)數(shù)n+1,該公式都是數(shù)值穩(wěn)定的。(6分)2003-2004第一學(xué)期一填空(3*5)1近似數(shù)關(guān)于真值有-位有效數(shù)字。2的相對誤差為的相對誤差的-倍。3設(shè)可微,求根的牛頓迭代公式-。4插值型求積公式的代數(shù)精確度
3、至少是-次。5擬合三點(diǎn)和的常函數(shù)是-。二已知有如下的數(shù)據(jù)12324123試寫出滿足插值條件以及的插值多項(xiàng)式,并寫出誤差的表達(dá)形式。三(1)用復(fù)化辛浦森公式計(jì)算為了使所得的近似值有6位有效數(shù)字,問需要被積函數(shù)在多少個點(diǎn)上的函數(shù)值? (2)取7個等距節(jié)點(diǎn)(包括端點(diǎn))用復(fù)化辛浦森公式計(jì)算,小數(shù)點(diǎn)后至少保留4位。四曲線與在點(diǎn)(0.7,0.3)附近有一個交點(diǎn),試用牛頓迭代公式計(jì)算的近似值,要求五 用雅可比方法解方程組是否對任意的初始向量都收斂,為什么?取,求出解向量的近似向量,要求滿足。六用校正一次的歐拉預(yù)估校正格式求解初值問題的解函數(shù)在處的近似值,要求寫出計(jì)算格式。(步長,小數(shù)點(diǎn)后保留5位有效數(shù)字)七
4、設(shè)有求解初值問題的如下格式如假設(shè)問常數(shù)為多少時使得該格式為二階格式? 2005-2006第二學(xué)期一填空(3*5)1 設(shè)近似數(shù)都是四舍五入得到的,則相對誤差-。2 矛盾方程組的最小二乘解為-。3 近似數(shù)關(guān)于真值有幾位有效數(shù)字4 取,迭代過程是否穩(wěn)定?5 求積公式有幾次的代數(shù)精確度?二 取初值,用牛頓迭代法求的近似值,要求先論證收斂性。當(dāng)時停止迭代。三用最小二乘法確定中的常數(shù)a和b,使該曲線擬合于下面的四個點(diǎn)(1,1.01)(2,7.04)(3,17.67)(4,31.74)(計(jì)算結(jié)果保留到小數(shù)點(diǎn)后4位)四用乘冪法求矩陣a的按模最大的特征值的第k次近似值及相應(yīng)的特征向量,要求取初值且這里 a=五考
5、察用高斯賽德爾迭代法解方程組收斂性,并取,求近似解,使得(i=1,2,3)六已知單調(diào)連續(xù)函數(shù)的如下數(shù)據(jù)用插值法求方程在區(qū)間(0.00,1.80)內(nèi)根的近似值。(小數(shù)點(diǎn)后至少保留4位)七設(shè)有積分 取5個等距節(jié)點(diǎn)(包括端點(diǎn)),列出被積函數(shù)在這些節(jié)點(diǎn)上的函數(shù)值表(小數(shù)點(diǎn)后至少保留4位)用復(fù)化的simpson公式求該積分的近似值,并且由截?cái)嗾`差公式估計(jì)誤差大小。八給定初值問題寫出euler預(yù)估校正格式取步長為0.2,計(jì)算在1.4處的函數(shù)的近似值。九設(shè)矩陣a對稱正定,考慮迭代格式對任意的初始向量是否收斂到的解,為什么? 計(jì)算方法2006-2007第二學(xué)期1 填空1). 近似數(shù)關(guān)于真值有_為有效數(shù)字。2)
6、 適當(dāng)選擇求積節(jié)點(diǎn)和系數(shù),則求積公式的代數(shù)精確度最高可以達(dá)到_次.3) 設(shè)近似數(shù),都是四舍五入得到的,則相對誤差 的相對誤差限_4) 近似值的相對誤差為的_ 倍。5) 擬合三點(diǎn)a(0,1), b(1,3),c(2,2)的平行于軸的直線方程為_.2. 用迭代法求方程在(-1,0)內(nèi)的重根的近似值。要求1)說明所用的方法為什么收斂;2)誤差小于時迭代結(jié)束。3用最小二乘法確定中的和,使得該函數(shù)曲線擬合于下面四個點(diǎn) (1.0,1.01), (1.5,2.45), (2.0,4.35), (2.5,6.71) (計(jì)算結(jié)果保留到小數(shù)點(diǎn)后4位)4 設(shè)函數(shù)有二階連續(xù)導(dǎo)數(shù),在一些點(diǎn)上的值如下1.01.11.20
7、.010.110.24寫出中心差分表示的二階三點(diǎn)微分公式,并由此計(jì)算。5 已知五階連續(xù)可導(dǎo)函數(shù)的如下數(shù)據(jù)0101010試求滿足插值條件的四次多項(xiàng)式6 設(shè)有如下的常微分方程初值問題1) 寫出每步用歐拉法預(yù)估,用梯形法進(jìn)行一次校正的計(jì)算格式。2) 取步長0.2用上述格式求解。7 設(shè)有積分1)取7個等距節(jié)點(diǎn)(包括端點(diǎn)),列出被積函數(shù)在這些點(diǎn)出的值(保留到小數(shù)點(diǎn)后4位)2)用復(fù)化simpson公式求該積分的近似值。8 用lu分解法求解線性代數(shù)方程組9 當(dāng)常數(shù)c取合適的值時,兩條拋物線 與就在某點(diǎn)相切,試取出試點(diǎn),用牛頓迭代法求切點(diǎn)橫坐標(biāo)。誤差小于時迭代結(jié)束。參考答案; 1: (1)2, (2) 2n-
8、1 (3) 2.1457*10e-3 (4)1/5 (5) x=12 解:將方程變形為 即求在(-1,0)內(nèi)的根的近似值牛頓迭代格式為 收斂性證明; 局部收斂定理結(jié)果 。3 用最小二乘法 正則方程組為解得 a=1.0072; b=0.45634解 推導(dǎo)中心差分格式得到5 解 截?cái)嗾`差 6 7 0.68058 (0 1 0 1)9 解 兩條曲線求導(dǎo) 和切點(diǎn)橫坐標(biāo)一定滿足=將等式變形為 牛頓迭代法 結(jié)果為 0.34781winger tuivasa-sheck, who scored two tries in the kiwis 20-18 semi-final win over england,
9、 has been passed fit after a lower-leg injury, while slater has been named at full-back but is still recovering from a knee injury aggravated against usa.both sides boast 100% records heading into the encounter but australia have not conceded a try since josh charnleys effort in their first pool mat
10、ch against england on the opening day.aussie winger jarryd hayne is the competitions top try scorer with nine, closely followed by tuivasa-sheck with eight.but it is recently named rugby league international federation player of the year sonny bill williams who has attracted the most interest in the
11、 tournament so far.the kiwi - with a tournament high 17 offloads - has the chance of becoming the first player to win the world cup in both rugby league and rugby union after triumphing with the all blacks in 2011.id give every award back in a heartbeat just to get across the line this weekend, said
12、 williams.the (lack of) air up there watch mcayman islands-based webb, the head of fifas anti-racism taskforce, is in london for the football associations 150th anniversary celebrations and will attend citys premier league match at chelsea on sunday.i am going to be at the match tomorrow and i have
13、asked to meet yaya toure, he told bbc sport.for me its about how he felt and i would like to speak to him first to find out what his experience was.uefa hasopened disciplinary proceedings against cskafor the racist behaviour of their fans duringcitys 2-1 win.michel platini, president of european foo
14、tballs governing body, has also ordered an immediate investigation into the referees actions.cska said they were surprised and disappointed by toures complaint. in a statement the russian side added: we found no racist insults from fans of cska. baumgartner the disappointing news: mission aborted.th
15、e supersonic descent could happen as early as sunda.the weather plays an important role in this mission. starting at the ground, conditions have to be very calm - winds less than 2 mph, with no precipitation or humidity and limited cloud cover. the balloon, with capsule attached, will move through t
16、he lower level of the atmosphere (the troposphere) where our day-to-day weather lives. it will climb higher than the tip of mount everest (5.5 miles/8.85 kilometers), drifting even higher than the cruising altitude of commercial airliners (5.6 miles/9.17 kilometers) and into the stratosphere. as he
17、crosses the boundary layer (called the tropopause),e can expect a lot of turbulence.the balloon will slowly drift to the edge of space at 120,000 feet ( then, i would assume, he will slowly step out onto something resembling an olympic diving platform.they blew it in 2008 when they got caught cold i
18、n the final and they will not make the same mistake against the kiwis in manchester.five years ago they cruised through to the final and so far history has repeated itself here - the last try they conceded was scored by englands josh charnley in the opening game of the tournament.that could be class
19、ed as a weakness, a team under-cooked - but i have been impressed by the kangaroos focus in their games since then.they have been concentrating on the sort of stuff that wins you tough, even contests - strong defence, especially on their own goal-line, completing sets and a good kick-chase. theyve been great at all the unglamorous stuff that often go
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國冰箱行業(yè)商業(yè)模式創(chuàng)新戰(zhàn)略制定與實(shí)施研究報告
- 2025-2030年中國美容培訓(xùn)行業(yè)資本規(guī)劃與股權(quán)融資戰(zhàn)略制定與實(shí)施研究報告
- 建設(shè)施工過程職業(yè)病危害防治總結(jié)報告
- 肇慶市中小學(xué)教學(xué)質(zhì)量評估2012屆高中畢業(yè)班第二次模擬試題數(shù)學(xué)(理)
- 浙江中乾計(jì)量校準(zhǔn)有限公司介紹企業(yè)發(fā)展分析報告
- 軟件評估報告范例怎么寫
- 一年級數(shù)學(xué)(上)計(jì)算題專項(xiàng)練習(xí)集錦
- 年產(chǎn)毛竹纖維粉生物基可降解材料項(xiàng)目可行性研究報告模板-立項(xiàng)備案
- 年產(chǎn)15萬噸(折百)稀硝酸及10萬噸濃硝酸項(xiàng)目可行性研究報告模板-立項(xiàng)備案
- 二零二五年度技術(shù)服務(wù)合同標(biāo)的和技術(shù)要求
- GB/T 20492-2006鋅-5%鋁-混合稀土合金鍍層鋼絲、鋼絞線
- GB/T 20197-2006降解塑料的定義、分類、標(biāo)志和降解性能要求
- 公司變更評審表
- 自由戰(zhàn)爭-簡體素材表
- 新概念第三冊課文60全(打印版)
- 四年級硬筆書法教案教學(xué)設(shè)計(jì)共16課
- 自考現(xiàn)代漢語復(fù)習(xí)資料精品資料
- 論財(cái)務(wù)共享服務(wù)模式下財(cái)務(wù)稽核體系
- 19鍋爐水壓試驗(yàn)記錄
- 人教版小學(xué)1-6年級日積月累(全)
- 盤扣式腳手架(內(nèi)部培訓(xùn))(課堂PPT)
評論
0/150
提交評論