下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、成人高考專升本高等數(shù)學(xué)考試大綱總要求考生應(yīng)按本大綱的要求,了解或理解“高等數(shù)學(xué)”中極限和連續(xù)、一元函數(shù)微分學(xué)、一元函數(shù)積分學(xué)、多元函數(shù)微積分學(xué)的基本概念與基本理論,學(xué)會、掌握或熟練掌握上述各部分的基本方法應(yīng)注意各部分知識的結(jié)構(gòu)及知識的內(nèi)在聯(lián)系;應(yīng)具有一定的抽象思維能力、邏輯推理能力、運(yùn)算能力,能運(yùn)用基本概念、基本理論和基奉方法正確地推理證明,準(zhǔn)確地計(jì)算;能綜合運(yùn)用所學(xué)知識分析并解決簡單的實(shí)際問題。 本大綱對內(nèi)容的要求由低到高,對概念和理論分為“了解”和“理解”兩個層次;對方法和運(yùn)算分為“會”、“掌握”和“熟練掌握”三個層次.復(fù)習(xí)考試內(nèi)容一、極限1.知識范圍(1)數(shù)列極限的概念與性質(zhì)數(shù)列極限的定
2、義唯一性,有界性,四則運(yùn)算法則,夾逼定理,單調(diào)有界數(shù)列,極限存在定理(2)函數(shù)極限的概念與性質(zhì)函數(shù)在一點(diǎn)處極限的定義左、右極限及其與極限的關(guān)系x趨于無窮(x一,x+,x)時函數(shù)的極限,唯一性,法則,夾逼定理(3)無窮小量與無窮大量無窮小量與無窮大量的定義,無窮小量與無窮大量的關(guān)系,無窮小量的性質(zhì),無窮小量的比較(4)兩個重要極限2.要求(1)理解極限的概念,會求函數(shù)在一點(diǎn)處的左極限與右極限,了解函數(shù)在一點(diǎn)處極限存在的充分必要條件(2)了解極限的有關(guān)性質(zhì),掌握極限的四則運(yùn)算法則(3)理解無窮小量、無窮大量的概念,掌握無窮小量的性質(zhì)、無窮小量與無窮大量的關(guān)系會進(jìn)行無窮小量的比較(高階、低階、同階和
3、等價)會運(yùn)用等價無窮小量代換求極限(4)熟練掌握用兩個重要極限求極限的方法二、連續(xù)1知識范圍(1)函數(shù)連續(xù)的概念函數(shù)在一點(diǎn)處連續(xù)的定義,左連續(xù)與右連續(xù),函數(shù)在一點(diǎn)處連續(xù)的充分必要條件,函數(shù)的間斷點(diǎn)(2)函敖在一點(diǎn)處連續(xù)的性質(zhì)連續(xù)函數(shù)的四則運(yùn)算,復(fù)臺函數(shù)的連續(xù)性,反函數(shù)的連續(xù)性(3)閉區(qū)間上連續(xù)函數(shù)的性質(zhì)有界性定理,最大值與最小值定理,介值定理(包括零點(diǎn)定理)(4)初等函數(shù)的連續(xù)性2.要求(1)理解函數(shù)在一點(diǎn)處連續(xù)與間斷的概念,理解函數(shù)在一點(diǎn)處連續(xù)與極限存在的關(guān)系,掌握函數(shù)(含分段函數(shù))在一點(diǎn)處的連續(xù)性的判斷方法(2)會求函數(shù)的間斷點(diǎn)(3)掌握在閉區(qū)間上連續(xù)函數(shù)的性質(zhì),會用介值定理推證一些簡單命
4、題(4)理解初等函數(shù)在其定義區(qū)間上的連續(xù)性,會利用連續(xù)性求極限,一元函數(shù)微分學(xué)三、導(dǎo)數(shù)與微分1知識范圍(1)導(dǎo)數(shù)概念導(dǎo)數(shù)的定義,左導(dǎo)數(shù)與右導(dǎo)數(shù),函數(shù)在一點(diǎn)處可導(dǎo)的充分必要條件,導(dǎo)數(shù)的幾何意義與物理意義,可導(dǎo)與連續(xù)的關(guān)系(2)求導(dǎo)法則與導(dǎo)數(shù)的基本公式導(dǎo)數(shù)的四則運(yùn)算反函數(shù)的導(dǎo)數(shù)導(dǎo)數(shù)的基本公式(3)求導(dǎo)方法復(fù)合函數(shù)的求導(dǎo)法,隱函數(shù)的求導(dǎo)法,對數(shù)求導(dǎo)法,由參數(shù)方程確定的函數(shù)的求導(dǎo)法,求分段函數(shù)的導(dǎo)數(shù)(4)高階導(dǎo)數(shù)高階導(dǎo)數(shù)的定義高階導(dǎo)數(shù)的計(jì)算(5)微分微分的定義,微分與導(dǎo)數(shù)的關(guān)系,微分法則,一階微分形式不變性2.要求(l)理解導(dǎo)數(shù)的概念及其幾何意義,了解可導(dǎo)性與連續(xù)性的關(guān)系,掌握用定義求函數(shù)在一點(diǎn)處的導(dǎo)
5、散的方法(2)會求曲線上一點(diǎn)址的切線方程與法線方程(3)熟練掌握導(dǎo)數(shù)的基本公式、四則運(yùn)算法則及復(fù)合函數(shù)的求導(dǎo)方法,會求反函數(shù)的導(dǎo)數(shù)(4)掌握隱函數(shù)求導(dǎo)法、對數(shù)求導(dǎo)法以及由參數(shù)方程所確定的函數(shù)的求導(dǎo)方法,會求分段函數(shù)的導(dǎo)數(shù)(5)理解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的n階導(dǎo)數(shù)(6)理解函數(shù)的微分概念,掌握微分法則,了解可微與可導(dǎo)的關(guān)系,會求函數(shù)的一階微分(二)微分中值定理及導(dǎo)致的應(yīng)用1.知識范圍(l)微分中值定理羅爾(Rolle)定理拉格朗日(Lagrange)中值定理(2)洛必迭(I,Hospital)法則(3)函數(shù)單調(diào)性的判定法(4)函數(shù)的極值與極值點(diǎn)、最大值與最小值(5)曲線的凹凸性、拐點(diǎn)(6)
6、曲線的水平漸近線與鉛直漸近線2.要求(l)理解羅爾定理、拉格朗日中值定理及它們的幾何意義會用拉格朗日中值定理證明簡單的不等式(2)熟練掌握用洛必達(dá)法則求未定式的極限的方法(3)掌握利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性及求函數(shù)的單調(diào)增、減區(qū)間的方法,會利用函數(shù)的單調(diào)性證明簡單的不等式(4)理解函數(shù)扳值的概念掌握求函數(shù)的駐點(diǎn)、極值點(diǎn)、極值、最大值與最小值的方法,會解簡單的應(yīng)用問題(5)會判斷曲線的凹凸性,會求曲線的拐點(diǎn)(6)會求曲線的水平漸近線與鉛直漸近線2、一元函數(shù)積分學(xué)(一)不定積分1.知識范圍(1)不定積分原函數(shù)與不定積分的定義原函數(shù)存在定理不定積分的性質(zhì)(2)基本積分公式(3)換元積分法第一第換元法(
7、湊微分法)第二換元法(4)分部積分法(5) -些簡單有理函數(shù)的積分2.要求(1)理解原函數(shù)與不定積分的概念及其關(guān)系,掌握不定積分的性質(zhì),了解原函數(shù)存在定理(2)熟練掌握不定積分的基本公式(3)熟練掌握不定積分第-換元法,掌握第二換元法(限于三角代換與簡單的根式代換)(4)熟練掌握不定積分的分部積分法(5)會求簡單有理函數(shù)的不定積分(二)定積分1.知識范圍(1)定積分的概念定積分的定義及其幾何意義可積條件(2)定積分的性質(zhì)(3)定積分的計(jì)算變上限積分牛頓萊布尼茨(Newton-Leibniz)公式換元積分法分部積分法(4)無窮區(qū)間的反常積分(5)定積分的應(yīng)用平面圖形的面積旋轉(zhuǎn)體的體積2.要求(1
8、)理解定積分的概念及其幾何意義,了解函數(shù)可積的條件(2)掌握定積分的基本性質(zhì).(3)理解變上限積分是變上限的函數(shù),掌握對變上限積分求導(dǎo)數(shù)的方法(4)熟練掌握牛頓一萊布尼茨公式(5)掌握定積分的換元積分法與分部積分法 (6)理解無窮區(qū)間的反常積分的概念,掌握其計(jì)算方法(7)掌握直角坐標(biāo)系下用定積分計(jì)算平面圖形的面積以及平面圖形繞坐標(biāo)軸旋轉(zhuǎn)所生成的旋轉(zhuǎn)體的體積四、多元函數(shù)微積分學(xué)(一)多元函數(shù)微分學(xué)1、知識范圍圍(1)多元函數(shù)多元函數(shù)的定義-二元函數(shù)的幾何意義二元函數(shù)極限與連續(xù)的概念(2)偏導(dǎo)數(shù)與全微分偏導(dǎo)數(shù)全微分二階偏導(dǎo)數(shù)(3)復(fù)合函數(shù)的偏導(dǎo)數(shù)(4)隱函數(shù)的偏導(dǎo)數(shù)(5)二元函數(shù)的無條件椴值與條件擻值2.要求(l)了解多元函數(shù)的概念、二元函數(shù)的幾何意義會求二元函數(shù)的表達(dá)式及定義域丁解二元函數(shù)的極限與連續(xù)概念(對計(jì)算不作要求)。(2)理解偏導(dǎo)數(shù)概念,了解偏導(dǎo)數(shù)的幾何意義,了解盤微分概念.了解全微分存在的必要條件與充分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人房產(chǎn)抵押擔(dān)保貸款保險合同范本2篇
- 二零二五年度車輛運(yùn)輸水工鵝卵石運(yùn)輸協(xié)議3篇
- 2025年個人股東股權(quán)增資擴(kuò)股合同模板4篇
- 設(shè)計(jì)思維解鎖創(chuàng)意潛能的鑰匙
- 2025年度大學(xué)生實(shí)習(xí)實(shí)訓(xùn)基地實(shí)習(xí)崗位合作協(xié)議
- 2025年度個人戶外運(yùn)動裝備過橋資金借款合同3篇
- 網(wǎng)絡(luò)安全實(shí)訓(xùn)室的應(yīng)急預(yù)案制定及實(shí)施
- 2025年度工傷賠償協(xié)議范本發(fā)布通知3篇
- 二零二五年度車牌號碼拍賣合同書4篇
- 2025版新型材料研發(fā)項(xiàng)目施工保密協(xié)議書3篇
- 合成生物學(xué)在生物技術(shù)中的應(yīng)用
- 中醫(yī)門診病歷
- 廣西華銀鋁業(yè)財(cái)務(wù)分析報告
- 無違法犯罪記錄證明申請表(個人)
- 電捕焦油器火災(zāi)爆炸事故分析
- 大學(xué)生勞動教育PPT完整全套教學(xué)課件
- 繼電保護(hù)原理應(yīng)用及配置課件
- 《殺死一只知更鳥》讀書分享PPT
- 蓋洛普Q12解讀和實(shí)施完整版
- 2023年Web前端技術(shù)試題
- 品牌策劃與推廣-項(xiàng)目5-品牌推廣課件
評論
0/150
提交評論