版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、會計學(xué)1 理學(xué)大學(xué)物理系列二質(zhì)點運動學(xué)理學(xué)大學(xué)物理系列二質(zhì)點運動學(xué) 1.1 質(zhì)點運動的描述質(zhì)點運動的描述 第一章第一章 質(zhì)點運動學(xué)質(zhì)點運動學(xué) 第1頁/共34頁 一一 參考系參考系 坐標(biāo)系坐標(biāo)系 1. 1. 參考系(參考系(reference system) 2. 2. 坐標(biāo)系(坐標(biāo)系(coordinate system) 為描述物體的運動而選擇的標(biāo)準(zhǔn)物叫做為描述物體的運動而選擇的標(biāo)準(zhǔn)物叫做參考系參考系. 運動具有絕對性,而對運動的描述卻是相對的。運動具有絕對性,而對運動的描述卻是相對的。 要定量描述物體的位置與運動情況,需在參照系上建立相對靜止的要定量描述物體的位置與運動情況,需在參照系上建立
2、相對靜止的坐標(biāo)系坐標(biāo)系。 注意注意 坐標(biāo)系和參考系是任意選擇的坐標(biāo)系和參考系是任意選擇的 第2頁/共34頁 3. 3. 物理模型(物理模型(physical model) 質(zhì)點(質(zhì)點(particle) 在某些情況下,物體的大小、形狀對研究的運動不產(chǎn)生影響,或其影響可以忽略,把這樣的物體簡化為在某些情況下,物體的大小、形狀對研究的運動不產(chǎn)生影響,或其影響可以忽略,把這樣的物體簡化為質(zhì)點質(zhì)點。 質(zhì)點是理想模型,并非真實存在;質(zhì)點是理想模型,并非真實存在; 物體能否被視為質(zhì)點是有條件的相對的。物體能否被視為質(zhì)點是有條件的相對的。 說明說明 第3頁/共34頁 選擇合適的選擇合適的參考系參考系, 以方
3、便以方便確定確定物體的物體的運動性質(zhì)運動性質(zhì); 建立恰當(dāng)?shù)慕⑶‘?dāng)?shù)淖鴺?biāo)系坐標(biāo)系, 以以定量描述定量描述物體的物體的運動運動; 提出準(zhǔn)確的提出準(zhǔn)確的物理模型物理模型, 以以突出突出問題中最基本的問題中最基本的運動規(guī)律運動規(guī)律。 第4頁/共34頁 二二 位矢位矢 運動方程運動方程 位移位移 1. 1. 位置矢量(位置矢量(position vector) 由坐標(biāo)原點到物體所在位置的矢量叫做位置矢量,簡稱由坐標(biāo)原點到物體所在位置的矢量叫做位置矢量,簡稱位矢位矢或或矢徑矢徑。 o x y z P r i k j 直角坐標(biāo)系中,位置矢量可表為:直角坐標(biāo)系中,位置矢量可表為: kzj yi xr 222
4、 zyxrr 大?。捍笮。?方向:方向: r z r y r x coscoscos, 第5頁/共34頁 2. 2. 運動方程(運動方程(motion equation ) 位矢與時間的關(guān)系稱為位矢與時間的關(guān)系稱為運動方程運動方程 矢量式:矢量式: ktzjtyitxtr )()()()( 標(biāo)量式:標(biāo)量式: )()()(tzztyytxx ; 質(zhì)點在空間的運動路徑稱為軌道,將運動方程中的時間質(zhì)點在空間的運動路徑稱為軌道,將運動方程中的時間t 消去,得質(zhì)點運動的軌道方程。消去,得質(zhì)點運動的軌道方程。 例如:例如: 0,cos,sin ztytx 0, 1 22 zyx 軌道方程:軌道方程: 第6
5、頁/共34頁 3. 3. 位移(位移(displacement ) x y o B B r A r A r 以平面運動為例,取平面直角坐標(biāo)系。設(shè)以平面運動為例,取平面直角坐標(biāo)系。設(shè) 時刻質(zhì)點在時刻質(zhì)點在A點,點, 時刻質(zhì)點在時刻質(zhì)點在B點。點。 tt t 由始點由始點 A 指向終點指向終點 B 的有向線段的有向線段 稱為點稱為點 A 到到 B 的位移矢量的位移矢量 ,位移矢量位移矢量也簡稱也簡稱位移位移。 AB r AB rrr 第7頁/共34頁 222 zyxr 位移的大小位移的大小為為 A r B B r A r x y o B x A x AB xx B y A y AB yy jyix
6、r AAA jyixr BBB jyyixxr ABAB )()( 若質(zhì)點在若質(zhì)點在三維三維空間中運動,空間中運動, 則在直角坐標(biāo)系則在直角坐標(biāo)系 中其位中其位 移為移為 Oxyz kzzjyyixxr ABABAB )()()( 路程路程( ): 質(zhì)點實際運動軌跡的長度質(zhì)點實際運動軌跡的長度. s 又又 第8頁/共34頁 位移的物理意義位移的物理意義 A) 確切反映物體在空間位置的變化確切反映物體在空間位置的變化,與路徑無關(guān),只決定于質(zhì)點的始末位置。,與路徑無關(guān),只決定于質(zhì)點的始末位置。 B)反映反映了運動的矢量性和疊加性了運動的矢量性和疊加性. 位移的大小位移的大小 位矢大小的變化量位矢大
7、小的變化量 說明說明 與與 均為矢量,但前者是過程量,后者是瞬時量均為矢量,但前者是過程量,后者是瞬時量 r r 一般不等于一般不等于 r r 與與 均為過程量,但前者是矢量,后者是標(biāo)量均為過程量,但前者是矢量,后者是標(biāo)量 S r 第9頁/共34頁 三三 速度(速度(velocity) 1. 1. 平均速度平均速度 描寫質(zhì)點運動的快慢和方向的物理量。描寫質(zhì)點運動的快慢和方向的物理量。 t r v j t y i t x ji yx vv 平均速度是矢量,其方向與位移的方向相同。平均速度是矢量,其方向與位移的方向相同。 2. 2. 瞬時速度瞬時速度 當(dāng)當(dāng) 時平均速度的極限值叫做瞬時速度時平均速度
8、的極限值叫做瞬時速度, 簡稱簡稱速度速度 0 t t r t r t d d lim 0 v 第10頁/共34頁 srdd 當(dāng)當(dāng) 時時, 0 t t d d e t s v 當(dāng)質(zhì)點做曲線運動時,當(dāng)質(zhì)點做曲線運動時, 質(zhì)點在某一點的速度方向就是沿該點曲線的切線方向。質(zhì)點在某一點的速度方向就是沿該點曲線的切線方向。 jij t y i t x yx d d d d dt rd v 在直角坐標(biāo)系中在直角坐標(biāo)系中 大小:大?。?22 yx 方向:方向: x y tan 第11頁/共34頁 3. 3. 速率速率 t s 平均速率平均速率 瞬時速率瞬時速率 d d s t v srdd 當(dāng)當(dāng) 時時, 0
9、t ,但但 一運動質(zhì)點在某瞬時位于矢徑一運動質(zhì)點在某瞬時位于矢徑 的端點處,其速度大小為的端點處,其速度大小為),(yxr t r d d t r d d (A)(B) t r d d 22 ) d d () d d ( t y t x (C) (D) 第12頁/共34頁 四四 加速度(加速度(acceleration) 1. 1. 平均加速度平均加速度 描寫質(zhì)點速度變化的快慢和方向的物理量。描寫質(zhì)點速度變化的快慢和方向的物理量。 2 2 dt rd 2. 2. 瞬時加速度瞬時加速度 v a t 與與 同方向同方向 v a 0 d lim d vv t a tt 在直角坐標(biāo)系中在直角坐標(biāo)系中
10、jaiaj dt yd i dt xd a yx 2 2 2 2 大?。捍笮。?22 yx aaa 方向:方向: x y a a tan 第13頁/共34頁 例例1 1 已知一質(zhì)點的運動方程為已知一質(zhì)點的運動方程為 jti tr )2(2 2 (SI),求:),求: 和和 時的位矢;時的位矢; 1 t2 t 到到 內(nèi)的位移;內(nèi)的位移; 1 t2 t 到到 內(nèi)的平均速度;內(nèi)的平均速度; 1 t2 t 和和 時的速度;時的速度; 1 t2 t 到到 內(nèi)的平均加速度;內(nèi)的平均加速度; 1 t2 t 和和 時的加速度。時的加速度。 1 t2 t 解:解: )(2 1 mjir )(24 2 mjir
11、)(32 12 mjirrr )/(32smji t r )/(22smj ti dt rd 第14頁/共34頁 例例1 1 解:解: )/(22 1 smji )/(42 2 smji )/(2 2 smj t a )/(2 2 smj dt d a )/(2 2 1 smja )/(2 2 2 smja 已知一質(zhì)點的運動方程為已知一質(zhì)點的運動方程為 jti tr )2(2 2 (SI),求:),求: 和和 時的位矢;時的位矢; 1 t2 t 到到 內(nèi)的位移;內(nèi)的位移; 1 t2 t 到到 內(nèi)的平均速度;內(nèi)的平均速度; 1 t2 t 和和 時的速度;時的速度; 1 t2 t 到到 內(nèi)的平均加
12、速度;內(nèi)的平均加速度; 1 t2 t 和和 時的加速度。時的加速度。 1 t2 t 第15頁/共34頁 1、已知運動方程,求速度、加速度、已知運動方程,求速度、加速度 2、已知加速度和初始條件,求速度和運動方程、已知加速度和初始條件,求速度和運動方程 求導(dǎo)數(shù)求導(dǎo)數(shù) 運用積分方法運用積分方法 討論問題一定要選取坐標(biāo)系討論問題一定要選取坐標(biāo)系 注意矢量的書寫注意矢量的書寫 運動學(xué)中的兩類問題運動學(xué)中的兩類問題 注意注意 與與 的物理含義的物理含義 tvsr , dtvddsrd, 第16頁/共34頁 一質(zhì)點沿一質(zhì)點沿x x軸作直線運動,其位置軸作直線運動,其位置坐標(biāo)坐標(biāo)與時間的與時間的 關(guān)系為關(guān)系
13、為 x=10+8t-4t2, ,求:求: (1 1)質(zhì)點在第一秒內(nèi)和第二秒內(nèi)的平均速度。)質(zhì)點在第一秒內(nèi)和第二秒內(nèi)的平均速度。 (2 2)質(zhì)點在)質(zhì)點在t=0、1、2秒時的速度。秒時的速度。 解:解: 14141810 1 2 1 xt t x v tt 21 軸軸正正向向相相反反方方向向與與xsmv )(4 21 軸軸正正向向相相同同方方向向與與xsmv)(4 10 10242810 2 2 2 xt 例例2 2 (1) 10 0 0 xt 第17頁/共34頁 軸正向相反軸正向相反與與x s m v 8 2 t dt dx vt88 2 )( 軸正向相同軸正向相同與與x s m v 8 0
14、此此時時轉(zhuǎn)轉(zhuǎn)向向 0 1 v 代入代入 得:得: 2, 1, 0 t 第18頁/共34頁 例例3 3 解:解: dt d a tdtadtd4 0 0 4 t tdtd )/(22 22 0 smtt dt dx dttdtdx 2 2 dttdx tx x 0 2 2 0 )(10 3 2 3 2 33 0 mttxx 一質(zhì)點沿一質(zhì)點沿x軸運動,已知加速度為軸運動,已知加速度為 。初始條件為。初始條件為 時,時, 。求運動方程。求運動方程。 )(4 SIta mx10; 0 00 0 t 第19頁/共34頁 1.2 圓周運動圓周運動 第一章第一章 質(zhì)點運動學(xué)質(zhì)點運動學(xué) 第20頁/共34頁 0
15、 n 0 0 0 n P Q 方向描述方向描述作相互垂直的單位矢量作相互垂直的單位矢量 00 n 0 0 n 切向單位矢量切向單位矢量 法向單位矢量法向單位矢量指向軌道的凹側(cè)指向軌道的凹側(cè) 指向物體運動方向指向物體運動方向 切向加速度切向加速度法向加速度法向加速度 0 vv 00 naaaaa nn 一一 自然坐標(biāo)系自然坐標(biāo)系( (natural coordinate system) ) 第21頁/共34頁 B d A v vdv 0 )( tv dt d dt vd a 000 0 n v n dt ds ds d n dt d dt d 0 2 0 n v dt dv a 0 d 1 2
16、d dt d v dt dv 0 0 )( ds d 第22頁/共34頁 法向加速度、由速度方向變化引起法向加速度、由速度方向變化引起 切向加速度、由速度大小變化引起切向加速度、由速度大小變化引起 0 2 0 n v dt dv aaa n a n a a 2 2 222 vdtdvaaaa n n a a tg 加速度總是指向曲線的凹側(cè)加速度總是指向曲線的凹側(cè) 0 aa 0 naa nn 第23頁/共34頁 二二 圓周運動圓周運動 0 2 0 n v dt dv aaa n dt dv a r v an 2 A r 勻速圓周運動勻速圓周運動 cv 0 2 n R v a 向心加速度向心加速度
17、 第24頁/共34頁 三三 圓周運動的角量描述圓周運動的角量描述 1. 1. 平面極坐標(biāo)平面極坐標(biāo) A r x y o 設(shè)一質(zhì)點在設(shè)一質(zhì)點在 平面內(nèi)平面內(nèi) 運動,某時刻它位于點運動,某時刻它位于點 A .矢矢 徑徑 與與 軸之間的夾角軸之間的夾角 為為 . 于是質(zhì)點在點于是質(zhì)點在點 A 的位的位 置可由置可由 來確定來確定 . ),( rA Oxy r x 以以 為坐標(biāo)的參考系為為坐標(biāo)的參考系為平面極坐標(biāo)系平面極坐標(biāo)系 . ),( r sin cos ry rx 它與直角坐標(biāo)系之間的變換關(guān)系為它與直角坐標(biāo)系之間的變換關(guān)系為 第25頁/共34頁 2. 2. 圓周運動的角量描述圓周運動的角量描述
18、O X R 1 v 2 v s A B t A tt B 角位移角位移 沿沿逆時針逆時針轉(zhuǎn)動,角位移取轉(zhuǎn)動,角位移取正正值值 沿沿順時針順時針轉(zhuǎn)動,角位移取轉(zhuǎn)動,角位移取負(fù)負(fù)值值 角位置角位置 角速度角速度 角加速度角加速度 dt d t t 0 lim 單位:單位:rad/s 2 2 0 lim dt d dt d t t 單位:單位:rad/s2 矢量矢量 第26頁/共34頁 勻速圓周運動勻速圓周運動 是恒量是恒量 dtd t dtd 0 0 t 0 勻角加速圓周運動勻角加速圓周運動 是恒量是恒量 t 0 2 00 2 1 tt t dtd 0 0 t dt 0 0 一般圓周運動一般圓周運
19、動 )(2 0 2 0 2 第27頁/共34頁 線量線量速度、加速度速度、加速度 角量角量角速度、角加速度角速度、角加速度 Rdds 3. 3. 角量與線量的關(guān)系角量與線量的關(guān)系 R dt d R dt ds R dt d R dt d a 2 2 R R an 第28頁/共34頁 對于作曲線運動的物體,以下幾種說法中哪幾種是正確的:對于作曲線運動的物體,以下幾種說法中哪幾種是正確的: (A)切向加速度必不為零;切向加速度必不為零; (B)法向加速度必不為零(拐點處除外);法向加速度必不為零(拐點處除外); (C)由于速度沿切線方向,法向分速度必為零,因此法向加速度必為零;由于速度沿切線方向,
20、法向分速度必為零,因此法向加速度必為零; (D)若物體作勻速率運動,其總加速度必為零;若物體作勻速率運動,其總加速度必為零; (E)若物體的加速度若物體的加速度 為恒矢量,它一定作勻變速率運動為恒矢量,它一定作勻變速率運動 . a 第29頁/共34頁 由樓窗口以水平初速度由樓窗口以水平初速度v0射出一發(fā)子彈,取槍口為原點,沿射出一發(fā)子彈,取槍口為原點,沿v0為為x軸,豎直向下為軸,豎直向下為y軸,并取發(fā)射時軸,并取發(fā)射時t=0.試求:試求: (1)子彈在任一時刻子彈在任一時刻t的位置坐標(biāo)及軌道方程的位置坐標(biāo)及軌道方程; (2)子彈在子彈在t t時刻的速度,切向加速度和法向加速度時刻的速度,切向加速度和法向加速度。 a a gy xo v0 n 解:解:(1) 例例4 4 2 0 2 2 1 v gx y
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人股份優(yōu)先認(rèn)購權(quán)合同參考樣本2篇
- 2025年度個人投資理財合同范本詳細(xì)說明4篇
- 建筑設(shè)備租賃合同(2篇)
- 2025年農(nóng)業(yè)科技項目研發(fā)合作協(xié)議集錦4篇
- 2025年度員工退休金及福利待遇確認(rèn)協(xié)議4篇
- 2024年中級經(jīng)濟(jì)師考試題庫附完整答案
- 2025年銷售員銷售技巧與產(chǎn)品知識培訓(xùn)勞務(wù)用工協(xié)議3篇
- 2025個人股權(quán)買賣及收益分配合同范本4篇
- 貨幣課程設(shè)計
- 虛擬仿生課程設(shè)計思路
- 2024版智慧電力解決方案(智能電網(wǎng)解決方案)
- 公司SWOT分析表模板
- 小學(xué)預(yù)防流行性感冒應(yīng)急預(yù)案
- 肺癌術(shù)后出血的觀察及護(hù)理
- 聲紋識別簡介
- 生物醫(yī)藥大數(shù)據(jù)分析平臺建設(shè)-第1篇
- 基于Android的天氣預(yù)報系統(tǒng)的設(shè)計與實現(xiàn)
- 沖鋒舟駕駛培訓(xùn)課件
- 美術(shù)家協(xié)會會員申請表
- 聚合收款服務(wù)流程
- 中石化浙江石油分公司中石化溫州靈昆油庫及配套工程項目環(huán)境影響報告書
評論
0/150
提交評論