隔聲材料和結構淺說論文_第1頁
隔聲材料和結構淺說論文_第2頁
隔聲材料和結構淺說論文_第3頁
隔聲材料和結構淺說論文_第4頁
隔聲材料和結構淺說論文_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、隔聲材料和結構淺說論文 室內(nèi)裝修已成為一項獨立的產(chǎn)業(yè),大大小小的裝飾裝璜公司像雨后春筍,遍地林立。不少裝璜公司,以新風格、新材料、新工藝給室內(nèi)建筑裝修帶來新面貌,達到了新水平。 在很多情況下,室內(nèi)裝修有一定的聲學要求。不僅是各類劇院、體育場館和歌舞廳以及與聲學有關的錄音室、演播室等專業(yè)用房本身有一定的聲學技術指標,而且凡是公共場所,一般都需要傳播語言或音樂,即使是家庭用房現(xiàn)在也需要有良好的音樂欣賞環(huán)境。所以室內(nèi)裝修工程必須重視聲學要求。如果忽視這一點,極有可能造成不良后果。例如有一水上健身娛樂場所,地面基本上都是水面,上空是一大玻璃圓穹項,由于沒有聲學設計,致使廳內(nèi)混響時間特別長,當有文娛表演

2、時連報幕的話也聽不清。再如有的走廓或門廳,做得富麗堂皇、金碧輝煌,但即使是普通的談話聲或背景音樂,也在空間內(nèi)久傳不衰,形成令人煩惱的干擾噪聲。 造成音質(zhì)差的主要原因是沒有科學的聲學設計。不少裝飾工程公司本身沒有合格的聲學設計人員;有的一開始邀請聲學專家做設計,以后自以為有了“經(jīng)驗”,便大膽地把設計也承包了;有的是東抄西襲,以為找到了人家的奧秘,你做軟包,我也搞軟包,你用穿孔板,我也做穿孔板,實際上沒有掌握真正的聲學要求;也不排除有的工程技術人員懂得一些聲學知識,但并不精于室內(nèi)聲學的原理和實踐,做出了并不合格的聲學裝修設計。 室內(nèi)聲學設計是一門系統(tǒng)學科,涉及面較廣,本文只就與室內(nèi)裝飾有關的吸聲和

3、隔聲的材料和結構方面的知識作簡單介紹,希望裝飾工程人員和業(yè)主對聲學材料和結構有所了解,能夠理解聲學設計為什么作這樣那樣的處理,從而使裝飾工程在美觀和聲學要求上達到完美的統(tǒng)一。 1.吸聲與隔聲的基本概念 首先要明確吸聲與隔聲是完全不同的兩個聲學概念。吸聲是指聲波傳播到某一邊界面時,一部分聲能被邊界面反射(或散射),一部分聲能被邊界面吸收(這里不考慮在媒質(zhì)中傳播時被媒質(zhì)的吸收),這包括聲波在邊界材料內(nèi)轉化為熱能被消耗掉或是轉化為振動能沿邊界構造傳遞轉移,或是直接透射到邊界另一面空間。對于入射聲波來說,除了反射到原來空間的反射(散射)聲能外,其余能量都被看作被邊界面吸收。在一定面積上被吸收的聲能與入

4、射聲能之比稱為該邊界面的吸聲系數(shù)。例如室內(nèi)聲波從開著的窗戶傳到室外,則開窗面積可近似地認為百分之百地“吸收”了室內(nèi)傳來的聲波,吸聲系數(shù)為1。當然,我們所要考慮的吸聲材料,主要不是靠開口面積的吸聲,而要靠材料本身的聲學特性來吸收聲波。 對于兩個空間中間的界面隔層來說,當聲波從一室入射到界面上時,聲波激發(fā)隔層的振動,以振動向另一面空間輻射聲波,此為透射聲波。通過一定面積的透射聲波能量與入射聲波能量之比稱透射系數(shù)。對于開啟的窗戶,透射系數(shù)可近似為1(吸聲系數(shù)也為1),其隔聲效果為0,即隔聲量為0db。對于又重又厚的磚墻或厚鋼板,單位面積質(zhì)量大,聲波入射時只能激發(fā)起此隔層的微小振動,使對另一空間輻射的

5、聲波能量(透射聲能)很小,所以隔聲量大,隔聲效果好。但對于原來空間而言,絕大部分能量被反射,所以吸聲系數(shù)很小。 對于單一材料(不是專門設計的復合材料)來說,吸聲能力與隔聲效果往往是不能兼顧的。如上述磚墻或鋼板可以作為好的隔聲材料,但吸聲效果極差;反過來,如果拿吸聲性能好的材料(如玻璃棉)做隔聲材料,即使聲波透過該材料時聲能被吸收99(這是很難達到的),只有1的聲能傳播到另一空間,則此材料的隔聲量也只有20db,并非好的隔聲材料。有人把吸聲材料誤稱為“隔音材料”是不對的。如果有人介紹某種單一材料吸聲好隔聲也好,那他不是不懂就是在騙人了。 2.吸聲材料 吸聲材料是指吸聲系數(shù)比較大的建筑裝修材料。如

6、果材料內(nèi)部有很多互相連通的細微空隙,由空隙形成的空氣通道,可模擬為由固體框架間形成許多細管或毛細管組成的管道構造。當聲波傳入時,因細管中靠近管壁與管中間的聲波振動速度不同,由媒質(zhì)間速度差引起的內(nèi)摩擦,使聲波振動能量轉化為熱能而被吸收。好的吸聲材料多為纖維性材料,稱多孔性吸聲材料,如玻璃棉、巖棉、礦碴棉、棉麻和人造纖維棉、特制的金屬纖維棉等等,也包括空隙連通的泡沫塑料之類。吸聲性能與材料的纖維空隙結構有關,如纖維的粗細(微米至幾十微米間為好)和材料密度(決定纖維之間“毛細管”的等效直徑)、材料內(nèi)空氣容積與材料體積之比(稱空隙率,玻璃棉的空隙率在90以上)、材料內(nèi)空隙的形狀結構等。從使用的角度,可

7、以不管吸聲的機理,只要查閱材料吸聲系數(shù)的實驗結果即可。當然在選用時還要注意材料的防潮、防火以及可裝飾性等其他要求。 多孔性吸聲材料有一個基本吸聲特性,即低頻吸聲差,高頻吸聲好。定性的吸聲頻率特性見圖1。頻率高到一定值附近,見圖1中f0,吸聲系數(shù)達到最大值,頻率繼續(xù)增大時,吸聲系數(shù)在高端有些波動。這個f0的位置,大體上是f0對應的波長為材料厚度t的4倍 當材料厚度增加時,可以改善低頻的吸聲特性。圖1中t2大于t1,相同頻率時t2的吸聲系數(shù)大于t1的吸聲系數(shù)。如果t2=2t1,則相同吸聲系數(shù)對應的頻率大約為f2=f1,即厚度增加一倍,低頻吸聲系數(shù)的頻率特性向低頻移一個倍頻程。但并非可以一直增加厚度

8、來提高低頻吸聲系數(shù)的,因為聲波在材料的空隙中傳播時有阻尼,使增加厚度來改善低頻吸聲受到限制。不同材料有不同的有效厚度。像玻璃棉一類好的吸聲材料,一般用5cm左右的厚度,很少用到10cm以上。而像纖維板一類較微密的材料,其材料纖維間空隙非常小,聲波傳播的阻尼非常大,不僅吸聲系數(shù)小,而且有效厚度也非常小。 一般平板狀吸聲材料的低頻吸聲性能差是普遍規(guī)律。一種改進的方法是將整塊的吸聲材料切割成尖劈形狀,見圖2,當聲波傳播到尖劈狀材料時,從尖部到基部,空氣與材料的比例逐漸變化,也即聲阻抗逐漸變化,聲波傳播就超出平板狀材料有效厚度的限制,達到材料的基部,從而可改善低頻吸聲性能。吸聲頻率特性仍與圖1相似,最

9、大吸聲系數(shù)的頻率f0對應的波長大約為尖劈吸聲結構長度t的4倍。例如要使100hz以上頻率都有很高的吸聲系數(shù),吸聲尖劈的長度約為87cm左右。當然這樣的吸聲結構一般不宜用于室內(nèi)裝修,主要用于聲學實驗室或特殊的噪聲控制工程。 3.共振吸聲結構 利用不同的共振吸聲機理,設計各種類型的共振吸聲結構,使吸收峰值選擇在所需頻率位置,滿足不同頻率吸聲量的要求,特別是解決低頻吸聲量不足的問題。 3.1薄層多孔性吸聲材料的共振吸聲 薄層多孔性吸聲材料也包括各種透氣的織物,如棉、麻、絲、絨、人造纖維等織物。如圖3a,將材料掛在剛性面前距離d處,則當d=1/4(2n1)(1)時,是空氣中聲波波長,n為正整數(shù),織物處

10、于剛性面前駐波的聲壓波節(jié)位置,那里聲波的質(zhì)點振動速度最大,使在織物中消耗最大的聲能,形成共振吸聲。在(1)式中n分別等于0、1、2時,對應的共振吸聲頻率fn為:fn=(2n+1)/4.co/d(2)式中co為空氣中聲波傳播速度,一般以340ms計算。例如,當織物與剛性壁距離為34cm時,n=0對應的最低共振頻率f0=250hz,n=1對應的f1=750hz,n=2對應f2=1250hz。其共振吸聲的頻率特性見圖3b。吸聲峰值與織物性能有關,一般都比較大,但共振吸聲峰的寬度不大,在實際使用中往往將簾子增大折皺懸掛,即連續(xù)改變織物與剛性面的距離,并在不同距離處懸掛不止一層織物,以改善吸聲頻率特性。

11、此外,將厚度為d的玻璃棉一類材料離剛性面d處安裝,見圖4,則(1)式中的d變成為d(dt)連續(xù)變化,即有許多共振吸聲頻率,而最低共振頻率為f0=c04(dt)。 3.2薄膜共振吸聲結構 如果剛性面前d處有一層不透氣的膜,見圖5,膜的單位面積質(zhì)量為m,則膜與厚度為d的空氣層構成質(zhì)量彈簧的共振系統(tǒng),其共振頻率為: fr=co/2o/md(3) 式中o為空氣密度。例如在“軟包”外表面蒙上不透氣的膜,則包在里面的多孔性吸聲材料就不能發(fā)揮原有的吸聲功能,而首先是膜的共振吸聲并通過膜振動傳入材料內(nèi)的吸聲作用,而此膜振動又受到材料的阻尼抑制,吸聲效能受到限制。如果蒙皮用人造革一類質(zhì)量較大的材料,如有的劇院中

12、的座椅,那種吸聲性能就更差了。 3.3薄板共振吸聲結構 薄板是兩維的振動系統(tǒng),其共振頻率除了與板的物理常數(shù)和幾何尺寸有關外,還和它的邊緣固定狀況有關。如果一塊邊長為la、lb的矩形板,厚度為h,四邊都被牢固地鉗定,它的共振頻率fm,n為: fm,n=/2eh2/12(1-2)1/2.m2/1n2+n2/1b21/2(4) 式中e、分別為板的楊氏模量、密度和泊松比,m、n為正整數(shù)。當n=0、m=1時,得到最低的共振頻率(設lalb)。如果板為玻璃,將玻璃的物理常數(shù)代入: fm,n=2.510h3(m2/1n2+n2/1b2)1/2(5) 式中長度單位為米。例如長50cm、寬40cm、厚4mm的玻

13、璃窗,四邊固定,則(m,n)為(1,0)的最低共振頻率為20hz,(m,n)為(0,1)的共振頻率為25hz,(m,n)為(1,1)的共振頻率為32hz。隨著(m,n)漸次增大,共振頻率越來越大(間隔也越來越密),在這些頻率上有較大的聲吸收和聲透射。 在室內(nèi)裝修中經(jīng)常用到板材,它們都有一定的共振吸聲效應,其共振頻率大體上如(4)式所示,與板的幾何尺寸和物理常數(shù)有關,同時與邊緣固定狀況有關,例如釘子釘多少,釘緊的程度,是否用膠固定等等。因此這類共振吸聲往往不被主動采用在設計方案內(nèi),只有有經(jīng)驗的設計師才謹慎地使用。但有一點非常重要,即當用薄板作表面裝飾處理時,為避免共振頻率過多的一致,在設計和施工

14、中注意將固定薄板的木筋之間給予不同的間距尺寸,使共振頻率得以分散。對于不希望有薄板共振吸聲作用的聲學空間,表面處理就采用貼實的厚板。 3.4穿孔板共振吸聲結構 經(jīng)常利用穿孔板共振吸聲結構來補足低頻所需的吸聲量。穿孔板吸聲結構如圖6a所示,板厚t,離剛性面距離d,如板上鉆圓孔(也可開狹縫),孔的半徑為a,穿孔面積占板面積的比率(穿孔率)為p,則此穿孔共振結構的共振頻率fr為 fr=co/2p/(t+16a)d(6) 式中表示共振頻率有好幾個參數(shù)可以調(diào)節(jié),如板厚t,孔的半徑a,穿孔率p以及板與剛性面的距離d?,F(xiàn)在市場上有做好的不同穿孔率的穿孔板,可以選擇不同的穿孔率和改變板與剛性面間距離d,來得到

15、所需的共振頻率。 需要注意的是穿孔板共振吸聲峰的形狀,它與共振結構系統(tǒng)的阻尼有關。見圖6b,阻尼小時,共振峰較尖銳,阻尼大時共振峰較為平緩。一般寧可選擇較為平緩的吸聲特性,以避免過強的吸聲頻率選擇性。板厚、孔徑小,阻尼較大。微穿孔板的穿孔直徑為081mm左右,所以阻尼大,吸收峰較為平緩,但因易積灰和不耐腐蝕,所以不少地方不宜采用。 一般穿孔板厚度不大于5mm,穿孔直徑在610mm左右,這種情況下阻尼嫌小。要增加共振結構的阻尼,需要在穿孔附近增加吸聲材料。參看圖6c,當聲波傳播經(jīng)過穿孔時,“聲線”像流線那樣在孔中和孔附近比較密集,那里的“流速”大,即聲波的質(zhì)點振動速度大,吸聲材料產(chǎn)生最大的阻尼作

16、用。我們很難將吸聲材料填塞到一個個孔中,所以往往在板的前面或后面貼一層吸聲材料(厚度為一個孔直徑時效率最高)來增加共振吸聲系統(tǒng)的阻尼,使吸收峰比較平緩。吸聲材料在穿孔板后面時,只起到共振吸聲的阻尼作用;若放在穿孔板前面,則同時兼有多孔性吸聲材料的吸聲功能。穿孔率p大于02時,一般不是共振吸聲結構,僅僅作為多孔性吸聲材料的“護面板”。 4.隔聲材料 不透氣的固體材料,對于空氣中傳播的聲波都有隔聲效果,隔聲效果的好壞最根本的一點是取決于材料單位面積的質(zhì)量。 參看圖7,一個面積非常大的隔層,其單位面積質(zhì)量為ms,當聲波從左面垂直入射時,激發(fā)隔層作整體振動,此振動再向右面空間輻射聲波。以單位面積考慮,

17、透射到右面空間的聲能與入射到隔層上的聲能之比稱透射系數(shù)。定義無限大隔層材料的傳遞損失(也稱透射損失)tl: tl=101g1/(7) 上述簡單情況下可計算得到傳遞損失近似為: tl=20lgms/2oco(db)(8) 式中=2f為圓頻率,0、c0為空氣的密度和聲波傳播速度。tl的大小表示材料的隔聲能力。(8)式的一個重要特點,即材料單位面積質(zhì)量增加一倍,則傳遞損失增加6db。這一隔聲的基本規(guī)律稱“質(zhì)量定律”,也就是說隔聲靠重量。所以像磚墻、水泥墻或厚鋼板、鉛板等單位面積質(zhì)量大的材料,隔聲效果都比較好。 (8)式也表明,單層隔聲的高頻隔聲好,低頻差。頻率每提高一倍,傳遞損失就增加6db。 需要

18、說明的是:傳遞損失tl是隔層面積為無限大時的理論“隔聲量”,作為一垛墻或樓板,它都有邊緣與其它建筑構件連接,這時的“隔聲量”與(7)式所表示的傳遞損失有差別。既有因邊緣接近于固定而增大隔聲能力,也有作為邊緣固定的板振動有一定的共振頻率,使某些共振頻率點上隔聲效果降低的現(xiàn)象。而當作為兩相鄰房間之間的隔墻或樓板,因為兩室之間有多條傳聲(或振動)通道,這兩個房間之間的隔聲量(只能稱聲級差)更不能以該隔層的傳遞損失來代表。 隔層材料在物理上有一定彈性,當聲波入射時便激發(fā)振動在隔層內(nèi)傳播。當聲波不是垂直入射,而是與隔層呈一角度入射時,聲波波前依次到達隔層表面,而先到隔層的聲波激發(fā)隔層內(nèi)彎曲振動波沿隔層橫

19、向傳播,若彎曲波傳播速度與空氣中聲波漸次到達隔層表面的行進速度一致時,聲波便加強彎曲波的振動,這一現(xiàn)象稱吻合效應。這時彎曲波振動的輻度特別大,并向另一面空氣中輻射聲波的能量也特別大,從而降低隔聲效果。產(chǎn)生吻合效應的頻率fc為: fc=co2/2sin212(1-2)/eh21/2(9) 式中、e分別為隔層材料的密度、泊松比和楊氏模量,h是隔層厚度。任意吻合頻率fc與聲波入射角有關。在大多數(shù)房間中的聲場都接近于混響聲場,到達隔層的入射角從0到90都有可能,因此吻合頻率出現(xiàn)在從掠入射(=90)的fc0開始的一個頻率范圍,也就是說吻合效應使某一頻率范圍的隔聲效果變差。一般這一頻率范圍發(fā)生在中高頻。從

20、質(zhì)量定律知道,中高頻隔聲量較大,除了內(nèi)阻尼很小的金屬板外,因吻合效應使中高頻隔聲量降低的現(xiàn)象,不會引起很大的麻煩。 5.雙層隔聲結構 根據(jù)質(zhì)量定律,頻率降低一半,傳遞損失要降6db;而要提高隔聲效果時,質(zhì)量增加一倍,傳遞損失增加6db。在這一定律支配下,若要顯著地提高隔聲能力,單靠增加隔層的質(zhì)量,例如增加墻的厚度,顯然不能行之有效,有時甚至是不可能的,如航空器上的隔聲結構。這時解決的途徑主要是采用雙層以至多層隔聲結構。 雙層隔聲結構模型見圖8,單位面積質(zhì)量分別為m1、m2,中間空氣層厚度為l。雙層結構的傳遞損失可以進行理論計算,結果比較復雜,在不同頻率范圍可以得到不同的簡化表示,這里只作定性介紹。 兩個隔層與中間空氣層組成一個共振系統(tǒng),共振頻率為fr(m的單位為kgm2,l的單位為m): fr=60/m1m

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論