金融數(shù)據(jù)挖掘_第1頁(yè)
金融數(shù)據(jù)挖掘_第2頁(yè)
金融數(shù)據(jù)挖掘_第3頁(yè)
金融數(shù)據(jù)挖掘_第4頁(yè)
金融數(shù)據(jù)挖掘_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、基于glm (廣義線性模型)的數(shù)據(jù)分析sas里的glm應(yīng)用在實(shí)際中比較廣泛,對(duì)數(shù)據(jù)的分析具有比較強(qiáng)的普適 性。趨勢(shì)面回歸分析(trend analysis)是以多元回歸分析為理論基礎(chǔ)的一 種預(yù)測(cè) 與統(tǒng)計(jì)技術(shù)。它用空間坐標(biāo)法進(jìn)行多項(xiàng)式回歸,從中估計(jì)出最佳的 回歸模型,因 此也被稱為趨勢(shì)面分析,當(dāng)不知道手中的數(shù)據(jù)呈線性還是非 線性相關(guān)時(shí),可以采用趨勢(shì)面數(shù)據(jù)分析方法,以便找出擬合數(shù)據(jù)的最佳統(tǒng)計(jì) 預(yù)測(cè)模型。本文運(yùn)用glm對(duì)一定的數(shù)據(jù)進(jìn)行g(shù)lm分析。一、數(shù)據(jù)與要求此處選取15名吧不同程度的煙民的每日飲酒(啤酒)量與心電圖指標(biāo)(zb)的對(duì)應(yīng)數(shù)據(jù)。然后設(shè)法建立zb與日抽煙量(x) /支和日飲酒量(y) /升

2、之間的關(guān)系。序號(hào)組另ij日抽煙量(x) /支日飲酒量(y) /升心電圖指標(biāo)/ 、113010280212511260313513330414014400514514410622012270721811210822512280922513300102231329011340144101234515420133481642514350184501535519470二、運(yùn)用glm過(guò)程進(jìn)行趨勢(shì)面分析1 .趨勢(shì)分析的glm程序data beer;input obsn x y zb; cards;01 30 10 28002 25 11 26003 35 13 33004 40 14 40005 45 1

3、441006 20 12 27007 18 11 21008 25 12 28009 25 13 30010 23 13 29011 40 1441012 45 15 42013 48 16 42514 50 18 45015 55 19 470 proc glm; model zb=x y/p;proc glm;model zb=x y x*x x*y y*y/p;proc glm;model zb=x y x*x*x x*x*y x*y*y y*y*y/p;proc glm;model zb=x y x*x*x x*x*y x*y*y y*y*y x*x*x*x x*x*x*y x*x*y

4、*y x*y*y*y y*y*y*y/p; run;2.四種分析模型結(jié)果(1)一階趨勢(shì)模型dependent variable: zb源變量自由度平方和均值3sum ofsourcedfsquaresmean squaref valuepr fmodel90615.2099345307.60497127.19fx189541.5655889541.56558251.36 f114652.2435114652.2435141.13x |t|intercept64.0499938033.065399191.940.07665.383855650.839475676.41 f18666.167161

5、07.75 fx189541.5655889541.56558516.86 fx1965.2913631965.29136315.570.0426y1127.4395437127.43954370.740.4133x*x143.662297243.66229720.250.6277x*y1242.0343234242.03432341.400.2675y*y149.843031649.84303160.290.6047standardparameterestimateerrort valuepr|t|intercept-262.7664793109.1074817-2.410.0394x16.

6、06997796.80786202.360.0426y23.539132727.44498670.860.4133x*x0.06387730.12723830.500.6277x*y-1.16510160.9857119-1.180.2675y*y1.16733622.17629820.540.60476270.0000000255.125602414.8743976observation12345observed280.0000000260.0000000330.0000000400.0000000410.0000000predicted279.4168700258.6814596351.0

7、997183388.1251282414.0657505residual0.58313001.3185404-21.099718311.8748718-4.06575057210.0000000216.6773768-6.677376868280.0000000300.00000009290.000000010410.000000011420.000000012425.000000013450.00000001415470.0000000279.9417834303.5367795295.5572467388.1251282419.0280585436.4318573453.755470646

8、5.43176990.0582166-3.5367795-5.557246721.87487180.9719415-11.4318573-3.75547064.5682301-0.0000001559.164195-0.000000-0.3542052.694808dependent variable: zb 源變量自由度平方和均值f值概率值sourcedfsum ofsquaresmean squaref value pr fmodel93393.4641415565.5773683.21 fx189541.5655889541.56558478.66 fx11643.3470811643.

9、3470818.780.0180197.474017197.4740171.060.3343y10.56x*x*x1105.516422105.5164220.4741x*x*y1113.710330113.7103300.610.4580x*y*y1146.610010146.6100100.780.4018y*y*y1173.116161173.1161610.930.3642standardparameterestimateerror t valuepr|t|intercept-166.007458982.37772231-2.020.0786x11.13825983.757952332

10、.960.0180y15.778434015.357039051.030.3343x*x*x-0.01541320.02052250-0.750.4741x*x*y0.12031870.154323330.780.4580x*y*y-0.34167860.38595313-0.890.4018y*y*y0.31348940.325876140.960.364215470.0000000463.53108336.4689167observationobservedpredictedresidual1280.0000000281.0906363-1.09063632260.0000000256.0

11、4837833.95162173330.0000000351.8935219-21.89352194400.0000000390.57078969.42921045410.0000000409.23096520.76903486270.0000000257.998349012.00165107210.0000000220.0483966-10.04839668280.0000000275.01603684.98396329300.0000000299.47099730.529002710290.0000000295.8228899-5.822889911410.0000000390.57078

12、9619.429210412420.0000000420.5758580-0.575858013425.0000000437.4437284-12.443728414450.0000000455.6875798-5.6875798-0.0000001496.535862-0.000000-0.3575452.686333sum of residualssum of squared residualssum of squared residuals - error ssfirst order autocorrelationdurbin-watson d4)四階趨勢(shì)模型dependent vari

13、able: zb 源變量自由度平方和均值f值概率值sum ofsourcedfsquaresmean squaref valuepr fmodel1194480.319198589.1199362.900.0029error3409.68081136.56027corrected total1494890.00000r-squarecoeff varroot msezb mean0.9956833.367695 11.68590347.0000sourcedftype i ssmean squaref valuepr fx189541.5655889541.56558655.690.0001y

14、11073.644351073.644357.860.0676x*x*x12078.776642078.7766415.220.0299x*x*y1508.85526508.855263.730.1491x*y*y117.5061417.506140.130.7440y*y*y1173.11616173.116161.270.3421x*x*x*x152.9156652.915660.390.5777x*x*x*y1193.81980193.819801.420.3192x*x*y*y1452.42798452.427983.310.1663x*y*y*y140.3287940.328790.

15、300.6246y*y*y*y1347.36281347.362812.540.2090sourcedftype iii ssmean squaref valuepr fx153.834735453.83473540.390.5746y118.442245818.44224580.140.7376x*x*x1707.3985134707.39851345.180.1073x*x*y1688.7276032688.72760325.040.1104x*y*y1669.2155979669.21559794.900.1137y*y*y1614.9897506614.98975064.500.123

16、9x*x*x*x173.525495773.52549570.540.5162x*x*x*y121.572098721.57209870.160.7176x*x*y*y1150.8940383150.89403831.100.37040.2581x*y*y*y1264.7516451264.75164511.94y*y*y*y1347.3628138347.36281382.540.2090standardparameterestimateerrort valuepr |t|intercept-748.5352475602.9093096-1.240.3026x21.526850134.285

17、57060.630.5746y63.4532525172.66693160.370.7376x*x*x1.11290830.48897822.280.1073x*x*y-7.84664423.4939960-2.250.1104x*y*y17.69195997.99199322.210.1137y*y*y-12.81731806.0398396-2.120.1239x*x*x*x-0.00528950.0072088-0.730.5162x*x*x*y-0.03396280.0854515-0.400.7176x*x*y*y0.42181270.40127851.050.3704x*y*y*y

18、-1.09527330.7866207-1.390.2581y*y*y*y0.84110790.52737831.590.2090observation1234567891011121314observed280.0000000260.0000000330.0000000400.0000000410.0000000270.0000000210.0000000280.0000000300.0000000290.0000000410.0000000420.0000000425.0000000450.0000000predicted280.6428697254.9148649336.2353148399.8451524409.0029100265.5623644212.0079405287.4716063292.6701245295.8090433399.8451524428.1747562422.5228478450.5733972residual-0.64286975.0851351-6.23531480.15484760.99709004.4376356-2.0079405-7.47160637.3298755-5.80

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論