版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、多傳感器融合方法一、數(shù)學(xué)知識(shí)K期望定義1設(shè)才是離散型隨機(jī)變量,它的概率函數(shù)是:RX=Xk)= “k,R = l,2,.如果|兀|幾有限,定義X的數(shù)學(xué)期望定義2設(shè)力是連續(xù)型隨機(jī)變量,其密度函數(shù)為/(%),如果J:|x|/(Q有限,定 義X的數(shù)學(xué)期望為2、條件數(shù)學(xué)期望定義尤在Y = y的條件下的條件分布的數(shù)學(xué)期望稱(chēng)為才在Y = y的條件下的條件 期望。當(dāng)(X)為離散隨機(jī)向量時(shí)E(XY = y) = XP=xiY = y)i當(dāng)(X,Y)為連續(xù)隨機(jī)向量時(shí)E(Xir = y) =匚啊 y (x1 y)dx3、貝葉斯公式定義 設(shè)Q為試驗(yàn)F的樣本空間,8為F的事件,州,仏,.觀為Q的一個(gè)劃分,且P(B)0,
2、 P(4)0(z = l,2,.Xp(bia.)p(a;)j-l稱(chēng)此為貝葉斯公式。4、貝葉斯估計(jì)期望損失:r(o a)=jQ 兄, e)p(e I xyie損失函數(shù):把8估計(jì)為6所造成的損失常用損失函數(shù):兄, &) = (&-6)2,平方誤差損失函數(shù)如果釆用平方誤差損失函數(shù),則&的貝葉斯估計(jì)量&是在給定“時(shí)&的條件期望,即:o = Eex=Q0p(ox)de同理可得到,在給定樣本集x下,的貝葉斯估計(jì)是:d = E0x = QOpOxyO求貝葉斯估計(jì)的方法:(平方誤差損失下)確定e的先驗(yàn)分布(&)求樣本集的聯(lián)合分布P(& iz) = fl pg 0)J-l求的后驗(yàn)概率分布/心|0)/“)QP(X
3、O)pO)dO求的貝葉斯估計(jì)量d = QOP(odeGaussian情況,僅參數(shù)& = “未知給定樣本集%,已知隨機(jī)變量xN(“,b:)均值未知而方差已知。均值變量的先驗(yàn)分布求的后驗(yàn)概率/?(/!/)pg戶黑;:鳥(niǎo)爲(wèi)p(xpx2,.,xz)11( 1exp4 、忑-2厲6, b丿 6 -孤&) (“ )勺聲 0)rx-l,人2, ,人/丿1-1=,/kn其中:j7zrexp1=P(召2,齊)在已知(州入,卯)的條件下,被測(cè)參數(shù)U的條件概率密度函數(shù)的指數(shù)部分 是/J的二次函數(shù),因此”(“1旺宀,齊)也服從高斯分布,設(shè)即:p(“l(fā) 召H,,x/) = -rJexp“_冷引 j J綜合以上兩式可得:
4、護(hù)+純a-山-廠r/ -r Hr缶叭5;用表示被測(cè)參數(shù)U的貝葉斯估計(jì)結(jié)果,則:J 一冷5、最大似然估計(jì) 似然函數(shù):在統(tǒng)計(jì)學(xué)中,是一種關(guān)于統(tǒng)計(jì)模型參數(shù)的函數(shù)。給定輸出x時(shí),關(guān)于 參數(shù)&的似然函數(shù)/.( e)(在數(shù)值上)等于給定參數(shù)&后變量尤的槪率。厶(&) = P(X = XI &) = P(X = X; &)最大似然估計(jì):事件力與參數(shù)有關(guān),&取值不同,則PG4)也不同。若力 發(fā)生了,則認(rèn)為此時(shí)的&值就是&的估計(jì)值。離散型設(shè)總體尤是離散型隨機(jī)變量,其槪率函數(shù)為p(x;&),其中&是未知參數(shù)。 設(shè)XE,Xn為取自總體才的樣本,XpX2,.Xn的聯(lián)合概率函數(shù)為fjp(X;0), 若&為常量,則表示兒
5、=心*2=勺,.乙=的概率。若已知樣本取的值是西,七,耳,則事件人=西,*2=勺,乂”=發(fā)生的 概率為fl(Xj:&),這一概率隨8的值而變化。從直觀上來(lái)看,既然樣本值 J-1片,兀2,兀出現(xiàn)了,它們出現(xiàn)的槪率相對(duì)來(lái)說(shuō)應(yīng)比較大,應(yīng)使fjp(Xj:8)取比較 /-I大的值。換句話說(shuō),&應(yīng)使樣本值冊(cè),花,兀的出現(xiàn)具有最大的槪率,將上式看 作&的函數(shù),并用厶(&)表示,就有:/I厶(&) =厶(心花;&)= IIP(Xj;&)/-稱(chēng)厶(&)為似然函數(shù)。極大似然估計(jì)法就是在參數(shù)e的可能取值范圍)內(nèi),選 取使厶(&)達(dá)到最大的參數(shù)值6,作為參數(shù)&的估計(jì)值,即取e,使厶(&)=厶(*2,兀;&)=巴吟厶(
6、幾兀29九;&)因此,求總體參數(shù)8的極大似然估計(jì)值的問(wèn)題就是求似然函數(shù)厶(&)的最大 值問(wèn)題,可通過(guò)解下面的方程蟲(chóng)4 = 0來(lái)解決。因?yàn)镮n厶是的Z.增函數(shù),所以 d0InZ.與厶在&的同一值處取得最大值。稱(chēng)/(基于貝葉斯估計(jì)的多傳感器檢測(cè)數(shù)據(jù)融合方法該方法主要用于利用多個(gè)相同類(lèi)型傳感器對(duì)同一被測(cè)參數(shù)的測(cè)量,使用該方 法可以改善單個(gè)傳感器可靠性對(duì)最終測(cè)量結(jié)果的影響。(1) 置信距離理論K和勺分別表示在一次測(cè)量中第/個(gè)和第丿個(gè)傳感器的輸出數(shù)據(jù),有:4 = 2 f px I xdx = 2S.=2( Pj(xlxJ)dx = 2Sj式中定狡為k對(duì)七的置信距離,式中心為勺對(duì)”,的置信距離。Pj(xX
7、j) =置信距離反映了傳感器輸出數(shù)據(jù)之間的相互支持關(guān)系,如心反映了傳感器/ 輸出數(shù)據(jù)對(duì)傳感器丿輸出數(shù)據(jù)的支持程度。置信距離越小,兩個(gè)傳感器的觀測(cè)值 越相近,否則偏差就很大。由此方法可以得到門(mén)個(gè)傳感器中任意兩個(gè)傳感器輸出數(shù)據(jù)之間的置信距離, 將這些值用矩陣形式表示,即為門(mén)個(gè)傳感器輸出數(shù)據(jù)的置信距離矩陣。112九=d2222加_dm dm2 dmm.(2) 最佳融合數(shù)的選擇方法得到置信距離矩陣后需要選擇一個(gè)臨界值幾對(duì)置信距離進(jìn)行劃分,用以判 斷兩個(gè)傳感器輸出數(shù)據(jù)之間是否支持。當(dāng)dti pl吋,認(rèn)為第/個(gè)傳感器的輸出支持第丿個(gè)傳感器的輸出數(shù)據(jù),當(dāng) di P,;時(shí),認(rèn)為第,個(gè)傳感器的輸出不支持第丿個(gè)傳
8、感器的輸出數(shù)據(jù)。J1 以I。 d由此也可得到一個(gè)矩陣,稱(chēng)之為關(guān)系矩陣:加仏關(guān)系矩陣表示任意兩個(gè)傳感器輸出之間是否支持,由此可以判斷每一個(gè)傳感器輸出數(shù)據(jù)是否認(rèn)為有效。這樣需要第二個(gè)臨界值即對(duì)于一個(gè)傳感器輸出,當(dāng)它被多于刃個(gè)傳感器輸出支持時(shí)認(rèn)為其輸出數(shù)據(jù)有效。由此方法依據(jù)關(guān)系矩陣對(duì)門(mén)個(gè)傳感器的輸出結(jié)果進(jìn)行選擇,得到/個(gè)有效數(shù)據(jù)參與融合計(jì)算,這/個(gè)有效數(shù)據(jù)成為最佳融合數(shù)。(3) 基于貝葉斯估計(jì)的融合計(jì)算方法(4) 實(shí)驗(yàn)仿真設(shè)被測(cè)參數(shù)“服從高斯分布,設(shè)“N(35O,&45)。傳感器編號(hào)123456789輸出值方差置信矩陣:D -00.89220. 97500. 87271. 00000.63130.2
9、8260.97100. 99990.916300.51540. 99920. 99950. 55430.96590.4641L. 00001.00000.923401. 00001. 00000.99981.00000.1602L. 00000.84030.9S610.999501. 00000.97460.71650.99940.96440.99360.93080.85310. 999700. 97340.9S660.3644L. 00000.61280.50480.80880. 98030. 999800.77480.7834L. 00000.27880.94790.99020. 7484
10、1. 00000. 786100.98790. 99930.97470.44470.06060. 99990. 99320. 81190.99090L. 00000.99971.00001. 00000.97171. 00001. 00000.9S911.00000選擇臨界值角=0.9,則對(duì)應(yīng)的關(guān)系矩陣為:R =1 11 00 10 00 11 01 00 11 01 00 11 00 00 10 10 00 01 00 10 10 10 01 00 10 11 00 11 11 00 10 000000000選擇當(dāng)一個(gè)傳感器輸出數(shù)攜被5個(gè)以上傳感器支持時(shí)認(rèn)為該傳感器輸出數(shù) 據(jù)有效,故得到最佳
11、融合數(shù)由第三、第六和第八個(gè)傳感器輸出數(shù)據(jù)組成,最終融 合結(jié)果:2、基于最大似然法的多傳感器數(shù)據(jù)融合方法(1)置信距離、關(guān)系矩陣和最佳融合數(shù)的確定同1o(2)最大似然法假設(shè)各傳感器測(cè)量值服從高斯分布,即:似然函數(shù):厶(0)=厶(斗,廠, 7 ; &) = 門(mén)(齊 I &)/-!求似然函數(shù)最大值,即求:d (需厶(心吃,兀;8) = 0對(duì)似然函數(shù)取對(duì)數(shù),得:61n厶(冊(cè),兀2,兀&)_0de_厲(看_6)一厲)=0,得-(3)實(shí)驗(yàn)仿真解工用10個(gè)傳感器測(cè)某特征參數(shù),獲得數(shù)據(jù)如下表所示:傳感器編號(hào)12345678910輸出值方差置信矩陣:00.03570.07130.10670. 97470. 38
12、250. 03570.07130.10670.97470.030200.03020. 06030. 93600. 80120.06030. 09030.12020. 94610. 05040.025200.02520. 87100. 70330.07560.10070.12560. 8SS90. 05350. 03570.017800. 70670. 52570.07130. 08900.10670. 76400. 63870. 62900.61920. 609200. 21580.64820.65760.66680. 53210.51610. 50350.49070. 47780. 2358
13、00. 52850.54070.55270.91090. 02520. 05040.07560.10070. 89320. 745100. 02520. 05040.87870. 05040. 0766010070.12560. 89990. 75800. 025200. 02620. 87100.05350.07130.08900.10670. 76100. 60150. 035?0.017800. 70670.63870.64820.65760. 66680. 93210. 87930. 62900.61920.60920選擇臨界值屍=05,則對(duì)應(yīng)的關(guān)系矩陣為:選擇當(dāng)一個(gè)傳感器輸出數(shù)據(jù)被6
14、個(gè)以上傳感器支持時(shí)認(rèn)為該傳感器輸出數(shù) 據(jù)有效,故得到最佳融合數(shù)由仁2、3、4、7、8、9傳感器輸出數(shù)據(jù)組成,最終 融合結(jié)果:“十= 0.99942丄3、最小均方誤差估計(jì)(1) 理論研究假設(shè)刃個(gè)傳感器同時(shí)對(duì)一維目標(biāo)直接進(jìn)行觀測(cè),其觀測(cè)方程的特征方程為Zi(k) = x(k) + vi 伙),R = l,2,., i = 1,2,nt式中,刃為傳感器個(gè)數(shù);門(mén)為信號(hào)長(zhǎng)度;石伙)為傳感器/在第&時(shí)間的觀測(cè)值; 氣伙)為傳感器/在第斤時(shí)間的觀測(cè)噪聲;x伙)為待估計(jì)的目標(biāo)狀態(tài)。記石=(召(1憶(2).,石(“)7為第 /個(gè)傳感器的觀測(cè)向量, 片=(片片為第/個(gè)傳感器的觀測(cè)噪聲向量, 兀=(兀兀(2),易(
15、“)為待估計(jì)的目標(biāo)狀態(tài)向量。則觀測(cè)方程可用向量的形式 寫(xiě)為Zf =X+V. i = l,2, ,m假設(shè)每個(gè)傳感器的觀測(cè)噪聲相互獨(dú)立且均是0均值加性高斯白噪聲,其相應(yīng) 的統(tǒng)計(jì)特性為v. = O,v.pJ = 在僅能從觀測(cè)值確定x時(shí),且嚴(yán)重缺乏其它信息時(shí),其最優(yōu)估計(jì)值左往往采用各觀測(cè)值的線性加權(quán)平均,對(duì)于任意多個(gè)傳感器,其最優(yōu)估計(jì)值左為問(wèn)題轉(zhuǎn)化為在誤差均方差最小情況下,尋求最優(yōu)值x的一個(gè)無(wú)偏估計(jì),使得其誤 差均方差具有最小估計(jì)誤差x=x-x = x-(kxZi +k2z2 + 匕 S)估計(jì)的無(wú)偏性要求E(x) = Ex-(x + i0-2(x + v2)(x + vJ = O ,所以必有人+心+=
16、 1由于匕獨(dú)立,可得估計(jì)的誤差均方差為E(x2) = E i_ 工出/-Ix+i?必=辦沏=工心+ 1一工出i-l J i-1J-lk J-1;n-l;n-l在誤差均方差最小意義下,要得到目標(biāo)信號(hào)的最優(yōu)估計(jì),只要適當(dāng)?shù)剡x擇久使 得E(x2)最小即可。求解可得det(A)det(A)式中,(? 1巧+兀22“r-ltn )( ;n_|)x( m-1)4表示把S的第/列換成6所得的矩陣。計(jì)算相應(yīng)行列式的值可得mm m匕=nT7/En7pj=i2從而得到最優(yōu)估計(jì)_1 加mr-1估計(jì)誤差方差的計(jì)算公式為mm fm、-m /( m運(yùn)吃;EK/IJKFK 2TK 二b+聽(tīng)尸il/-! mj-Im/r-1
17、m7 .v-lm/對(duì)于第一個(gè)/,都有/ r2 力 a;2 ,cr2 crf2(/ = 1,2,/?)式中,S為一個(gè)子集合,該子集包含所有傳感器的數(shù)據(jù)流。不難看出,上式的意 艾,以誤差均方差為評(píng)價(jià)指標(biāo),多源數(shù)據(jù)估值融合方法優(yōu)于任意單一數(shù)據(jù)評(píng)價(jià)方 法。(2)實(shí)驗(yàn)仿真?zhèn)鞲衅骶幪?hào)123456輸出值方差 M - 8.0 41.2 16.3 19.4 22. 9 12.9: D = 0. 16 0. 13 0.16 0. 12 0.11 0. 18: y -D)0.15160.18660.15160.20210.17330.134821.07574、分批估計(jì)同一個(gè)檢測(cè)量在不同位置的測(cè)量值進(jìn)行融合處理。對(duì)于同一類(lèi)型的傳感器首 先得到一組測(cè)量數(shù)據(jù),然總按照空間位置相鄰的兩個(gè)傳感器不在一組的原則把它 們分成兩組進(jìn)行計(jì)算。設(shè)第一組測(cè)量數(shù)據(jù)為XIP覽2、Xw ,第二組測(cè)量數(shù)據(jù)為 x2P X22、X2/I,則兩組數(shù)據(jù)的算數(shù)平均值為:對(duì)應(yīng)的均方差為:6=估評(píng)廠對(duì)若測(cè)量的真實(shí)值,則其測(cè)量方程為X = HXt+V。其中,尤為測(cè)量值;H為測(cè)量方程的系數(shù)矩陣,且H= 1丫 ; $為測(cè)量噪聲。利用分批估計(jì)的算法,測(cè)量方程式可改寫(xiě)為:紺;噸式中
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 產(chǎn)學(xué)研協(xié)同育人機(jī)制心得體會(huì)發(fā)言
- 長(zhǎng)春信息技術(shù)職業(yè)學(xué)院《商務(wù)計(jì)劃》2023-2024學(xué)年第一學(xué)期期末試卷
- 使用開(kāi)源軟件減少軟件許可費(fèi)
- 產(chǎn)品功能技術(shù)演講模板
- 保險(xiǎn)市場(chǎng)應(yīng)對(duì)策略模板
- 業(yè)務(wù)操作-2020年房地產(chǎn)經(jīng)紀(jì)人《房地產(chǎn)經(jīng)紀(jì)業(yè)務(wù)操作》真題匯編
- 社團(tuán)參與與高中生活模板
- 農(nóng)科技講座模板
- 二零二五版養(yǎng)老機(jī)構(gòu)設(shè)施改造及智能化升級(jí)合同3篇
- 統(tǒng)編版六年級(jí)語(yǔ)文上冊(cè)寒假作業(yè)(十)(有答案)
- 做好八件事快樂(lè)過(guò)寒假-2024-2025學(xué)年上學(xué)期中學(xué)寒假家長(zhǎng)會(huì)課件-2024-2025學(xué)年高中主題班會(huì)課件
- 【課件】寒假是用來(lái)超越的!課件 2024-2025學(xué)年高中上學(xué)期寒假學(xué)習(xí)和生活指導(dǎo)班會(huì)
- 2024-2025學(xué)年北師大版數(shù)學(xué)七年級(jí)上冊(cè)期末練習(xí)卷
- 2025年山東兗礦集團(tuán)公司招聘筆試參考題庫(kù)含答案解析
- 燃?xì)庥邢薰竟こ滩抗芾碇贫葏R編
- 2024年中國(guó)干粉涂料市場(chǎng)調(diào)查研究報(bào)告
- (自考)經(jīng)濟(jì)學(xué)原理中級(jí)(政經(jīng))課件 第二章 商品和貨幣
- ×××老舊小區(qū)改造工程施工組織設(shè)計(jì)(全面)
- 科創(chuàng)板知識(shí)題庫(kù)試題及答案
- GB/T 3324-2024木家具通用技術(shù)條件
- 《材料合成與制備技術(shù)》課程教學(xué)大綱(材料化學(xué)專(zhuān)業(yè))
評(píng)論
0/150
提交評(píng)論