高中數(shù)學(xué)第三章指數(shù)函數(shù)和對數(shù)函數(shù)3.6指數(shù)函數(shù)、冪函數(shù)、對數(shù)函數(shù)增長的比較知識點匯總素材北師大版必修1_第1頁
高中數(shù)學(xué)第三章指數(shù)函數(shù)和對數(shù)函數(shù)3.6指數(shù)函數(shù)、冪函數(shù)、對數(shù)函數(shù)增長的比較知識點匯總素材北師大版必修1_第2頁
高中數(shù)學(xué)第三章指數(shù)函數(shù)和對數(shù)函數(shù)3.6指數(shù)函數(shù)、冪函數(shù)、對數(shù)函數(shù)增長的比較知識點匯總素材北師大版必修1_第3頁
高中數(shù)學(xué)第三章指數(shù)函數(shù)和對數(shù)函數(shù)3.6指數(shù)函數(shù)、冪函數(shù)、對數(shù)函數(shù)增長的比較知識點匯總素材北師大版必修1_第4頁
高中數(shù)學(xué)第三章指數(shù)函數(shù)和對數(shù)函數(shù)3.6指數(shù)函數(shù)、冪函數(shù)、對數(shù)函數(shù)增長的比較知識點匯總素材北師大版必修1_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、3.6 指數(shù)函數(shù)、冪函數(shù)、對數(shù)函數(shù)增長的比較一、知識框圖二、目標(biāo)認知學(xué)習(xí)目標(biāo)1。指數(shù)函數(shù)(1)通過具體實例,了解指數(shù)函數(shù)模型的實際背景;(2)理解有理指數(shù)冪的含義,通過具體實例了解實數(shù)指數(shù)冪的意義,掌握冪的運算。(3)理解指數(shù)函數(shù)的概念和意義,能借助計算器或計算機畫出具體指數(shù)函數(shù)的圖象,探索并理解指數(shù)函 數(shù)的單調(diào)性與特殊點;(4)在解決簡單實際問題的過程中,體會指數(shù)函數(shù)是一類重要的函數(shù)模型。2。對數(shù)函數(shù)(1)理解對數(shù)的概念及其運算性質(zhì),知道用換底公式能將一般對數(shù)轉(zhuǎn)化成自然對數(shù)或常用對數(shù);通過閱 讀材料,了解對數(shù)的發(fā)現(xiàn)歷史以及對簡化運算的作用;(2)通過具體實例,直觀了解對數(shù)函數(shù)模型所刻畫的數(shù)量

2、關(guān)系,初步理解對數(shù)函數(shù)的概念,體會對數(shù)函 數(shù)是一類重要的函數(shù)模型;能借助計算器或計算機畫出具體對數(shù)函數(shù)的圖象,探索并了解對數(shù)函數(shù) 的單調(diào)性與特殊點;3。反函數(shù)知道指數(shù)函數(shù)與對數(shù)函數(shù)互為反函數(shù)(a0,a1).4.冪函數(shù)(1)了解冪函數(shù)的概念;(2)結(jié)合函數(shù)的圖象,了解它們的變化情況。重點指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)的性質(zhì),熟練掌握指數(shù)、對數(shù)運算法則,明確算理,能對常見的指數(shù)型函數(shù)、對數(shù)型函數(shù)進行變形處理.難點指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)為載體的復(fù)合函數(shù)來考察函數(shù)的性質(zhì)。三、知識要點梳理知識點一:指數(shù)及指數(shù)冪的運算1.根式的概念的次方根的定義:一般地,如果,那么叫做的次方根,其中當(dāng)為奇數(shù)時,正數(shù)的次方

3、根為正數(shù),負數(shù)的次方根是負數(shù),表示為;當(dāng)為偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù)可以表示為.負數(shù)沒有偶次方根,0的任何次方根都是0。式子叫做根式,叫做根指數(shù),叫做被開方數(shù).2.n次方根的性質(zhì): (1)當(dāng)為奇數(shù)時,;當(dāng)為偶數(shù)時,(2)3.分數(shù)指數(shù)冪的意義: ;注意:0的正分數(shù)指數(shù)冪等與0,負分數(shù)指數(shù)冪沒有意義.4.有理數(shù)指數(shù)冪的運算性質(zhì): (1) (2) (3)知識點二:指數(shù)函數(shù)及其性質(zhì)1.指數(shù)函數(shù)概念一般地,函數(shù)叫做指數(shù)函數(shù),其中是自變量,函數(shù)的定義域為。2.指數(shù)函數(shù)函數(shù)性質(zhì):函數(shù)名稱指數(shù)函數(shù)定義函數(shù)且叫做指數(shù)函數(shù)圖象定義域值域過定點圖象過定點,即當(dāng)時,。奇偶性非奇非偶單調(diào)性在上是增函

4、數(shù)在上是減函數(shù)函數(shù)值的變化情況變化對圖象的影響在第一象限內(nèi),從逆時針方向看圖象,逐漸增大;在第二象限內(nèi),從逆時針方向看圖象,逐漸減小.知識點三:對數(shù)與對數(shù)運算1。對數(shù)的定義(1)若,則叫做以為底的對數(shù),記作,其中叫做底數(shù), 叫做真數(shù)。(2)負數(shù)和零沒有對數(shù).(3)對數(shù)式與指數(shù)式的互化:。2。幾個重要的對數(shù)恒等式,,。3。常用對數(shù)與自然對數(shù)常用對數(shù):,即;自然對數(shù):,即(其中).4。對數(shù)的運算性質(zhì)如果,那么加法:減法:數(shù)乘:換底公式:知識點四:對數(shù)函數(shù)及其性質(zhì)1.對數(shù)函數(shù)定義一般地,函數(shù)叫做對數(shù)函數(shù),其中是自變量,函數(shù)的定義域。2.對數(shù)函數(shù)性質(zhì):函數(shù)名稱對數(shù)函數(shù)定義函數(shù)且叫做對數(shù)函數(shù)圖象定義域值

5、域過定點圖象過定點,即當(dāng)時,.奇偶性非奇非偶單調(diào)性在上是增函數(shù)在上是減函數(shù)函數(shù)值的變化情況變化對圖象的影響在第一象限內(nèi),從順時針方向看圖象,逐漸增大;在第四象限內(nèi),從順時針方向看圖象,逐漸減小.知識點六:冪函數(shù)1.冪函數(shù)概念形如的函數(shù),叫做冪函數(shù),其中為常數(shù)。2。冪函數(shù)的性質(zhì)(1)圖象分布:冪函數(shù)圖象分布在第一、二、三象限,第四象限 無圖象。冪函數(shù)是偶函數(shù)時,圖象分布在第一、二象限(圖象 關(guān)于軸對稱);是奇函數(shù)時,圖象分布在第一、三象限(圖 象關(guān)于原點對稱);是非奇非偶函數(shù)時,圖象只分布在第一象 限. (2)過定點:所有的冪函數(shù)在都有定義,并且圖象都通過 點。 (3)單調(diào)性:如果,則冪函數(shù)的圖

6、象過原點,并且在 上為增函數(shù)。如果,則冪函數(shù)的圖象在 上為減函數(shù),在第一象限內(nèi),圖象無限接近軸與軸。(4)奇偶性:當(dāng)為奇數(shù)時,冪函數(shù)為奇函數(shù),當(dāng)為偶數(shù)時,冪函數(shù)為偶函數(shù)。當(dāng)(其中 互質(zhì),和),若為奇數(shù)為奇數(shù)時,則是奇函數(shù),若為奇數(shù)為偶數(shù)時,則 是偶函數(shù),若為偶數(shù)為奇數(shù)時,則是非奇非偶函數(shù)。(5)圖象特征:冪函數(shù),當(dāng)時,若,其圖象在直線下方,若 ,其圖象在直線上方,當(dāng)時,若,其圖象在直線上方,若 ,其圖象在直線下方。尊敬的讀者:本文由我和我的同事在百忙中收集整編出來,本文稿在發(fā)布之前我們對內(nèi)容進行仔細校對,但是難免會有不盡如人意之處,如有疏漏之處請指正,希望本文能為您解開疑惑,引發(fā)思考。文中部分

7、文字受到網(wǎng)友的關(guān)懷和支持,在此表示感謝!在往后的日子希望與大家共同進步,成長。this article is collected and compiled by my colleagues and i in our busy schedule. we proofread the content carefully before the release of this article, but it is inevitable that there will be some unsatisfactory points. if there are omissions, please correct them. i hope this article can solve your doubts and arouse your thinking. part o

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論