




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、會計學1極限存在準則兩個重要極限和連續(xù)復利極限存在準則兩個重要極限和連續(xù)復利公式公式1.夾逼準則夾逼準則準則準則 如果數(shù)列如果數(shù)列nnyx ,及及nz滿足下列條件滿足下列條件: :,lim,lim)2()3 , 2 , 1()1(azaynzxynnnnnnn 那末數(shù)列那末數(shù)列nx的極限存在的極限存在, , 且且axnn lim. .證證,azaynn使得使得, 0, 0, 021 NN 第1頁/共23頁,1 ayNnn時恒有時恒有當當,max21NNN 取取恒有恒有時時當當,Nn , ayan即即,2 azNnn時恒有時恒有當當, azan上兩式同時成立上兩式同時成立, azxyannn,成
2、立成立即即 axn.limaxnn 上述數(shù)列極限存在的準則可以推廣到函數(shù)的極限上述數(shù)列極限存在的準則可以推廣到函數(shù)的極限第2頁/共23頁準則準則 如果當如果當)(00 xUx ( (或或Mx ) )時時, ,有有,)(lim,)(lim)2(),()()()1()()(00AxhAxgxhxfxgxxxxxx 那末那末)(lim)(0 xfxxx 存在存在, , 且等于且等于A. .準則準則 I和和準則準則 I稱為稱為夾逼準則夾逼準則.,的極限是容易求的的極限是容易求的與與并且并且與與鍵是構造出鍵是構造出利用夾逼準則求極限關利用夾逼準則求極限關nnnnzyzy注注第3頁/共23頁例例1 1).
3、12111(lim222nnnnn 求求解解,11112222 nnnnnnnnnnnnnn111limlim2 又又, 1 22111lim1limnnnnn , 1 由夾逼定理得由夾逼定理得. 1)12111(lim222 nnnnn第4頁/共23頁x1x2x3x1 nxnx2.單調有界準則單調有界準則滿足條件滿足條件如果數(shù)列如果數(shù)列nx,121 nnxxxx單調增加單調增加,121 nnxxxx單調減少單調減少單調數(shù)列單調數(shù)列準則準則 單調有界數(shù)列必有極限單調有界數(shù)列必有極限.幾何解釋幾何解釋:AM第5頁/共23頁例例2 2.)(333的極限存在的極限存在式式重根重根證明數(shù)列證明數(shù)列nx
4、n 證證,1nnxx 顯然顯然 ;是單調遞增的是單調遞增的nx, 331 x又又, 3 kx假假定定kkxx 3133 , 3 ;是有界的是有界的nx.lim存在存在nnx ,31nnxx ,321nnxx ),3(limlim21nnnnxx ,32AA 2131,2131 AA解得解得(舍去舍去).2131lim nnx第6頁/共23頁AC)20(, xxAOBO 圓心角圓心角設單位圓設單位圓,tan,sinACxABxBDx 弧弧于于是是有有xoBD.ACO ,得,得作單位圓的切線作單位圓的切線,xOAB的圓心角為的圓心角為扇形扇形,BDOAB的高為的高為 圓扇形AOB的面積AOB 的面
5、積AOC的面積1.1sinlim0 xxx第7頁/共23頁,tansinxxx , 1sincos xxx即即.02也成立也成立上式對于上式對于 x,20時時當當 x, 1coslim0 xx, 11lim0 x又又. 1sinlim0 xxx注注當20 x時,xxcos1cos102sin22x222x22x0)cos1(lim0 xx第8頁/共23頁例例3 3.cos1lim20 xxx 求求解解2202sin2limxxx 原式原式220)2(2sinlim21xxx 20)22sin(lim21xxx 2121 .21 第9頁/共23頁定義定義ennn )11(limnnnx)11(
6、設設 21! 2)1(1! 11nnnnn).11()21)(11(!1)11(! 2111nnnnnn nnnnnnn1!)1()1( 2.nnen1lim(1)第10頁/共23頁).11()221)(111()!1(1)111()221)(111(!1)111(! 21111 nnnnnnnnnnnxn,1nnxx 顯然顯然 ;是單調遞增的是單調遞增的nx!1! 2111nxn 1212111 n1213 n, 3 ;是是有有界界的的nx.lim存在存在nnx ennn )11(lim記為記為)71828. 2( e類似地類似地,第11頁/共23頁,1時時當當 x, 1 xxx有有,)11
7、()11()111(1 xxxxxx)11(lim)11(lim)11(lim1xxxxxxxx 而而, e 11)111(lim)111(lim)111(lim xxxxxxxx, e .)11(limexxx 第12頁/共23頁, xt 令令ttxxtx )11(lim)11(limttt)111(lim )111()111(lim1 tttt. e exxx )11(lim,1xt 令令ttxxtx)11(lim)1(lim10 . e exxx 10)1(lim第13頁/共23頁設本金為 0A,年利率為 r,則 一年末的本利和 )101rAA (二年末的本利和2012)1 ()1rAr
8、AA (k年末的本利和 k0)1 (rAAk如果一年分 n期計息,年利率仍為 r,則每期利率為 nr且前一期的本利和為后一期的本金, 于是一年末的本利和 nnrAA)101 (k年末共計復利 nk次,其本利和為 第14頁/共23頁nkknrAA)1 (0如果計息期數(shù) n,即利息隨時計入本金(連續(xù)復利),則k年末的本利和為 rknnknkeArnAnrAA0rknr0011lim)1 (lim上述兩式中: 0A稱為現(xiàn)值, kA稱為將來值(終值),已知0A求 kA,稱為復利問題, 已知 kA,求 0A稱為貼現(xiàn)問題,這時的利率稱為貼現(xiàn)率。 第15頁/共23頁例例4 4.)11(limxxx 求求解解
9、xxx )11(1lim1)11(lim xxx原式原式.1e 例例5 5.)23(lim2xxxx 求求解解422)211()211(lim xxxx原式原式.2e 第16頁/共23頁1.兩個準則兩個準則2.兩個重要極限兩個重要極限夾逼準則夾逼準則; 單調有界準則單調有界準則 .; 1sinlim10 某過程某過程.)1(lim210e 某過程某過程,為某過程中的無窮小為某過程中的無窮小設設 第17頁/共23頁思考練習. 0)(; 1)(;)(;)(DCBA不存在不存在 選擇選擇C).(1sinlim)1( xxx xxx20lim 1 (2)( ).)(; 0)(;)(;)(DCBA e2
10、 e2D第18頁/共23頁._3cotlim40 xxx、一、填空題一、填空題:._sinlim10 xxx 、._3sin2sinlim20 xxx、._2sinlim5 xxx、._)1(lim610 xxx、練練 習習 題題._arcsinlim30 xxx、第19頁/共23頁xxx2tan4)(tanlim2 、._)1(lim72 xxxx、._)11(lim8 xxx、xxxxsin2cos1lim10 、xxaxax)(lim3 、二、求下列各極限二、求下列各極限:nnnn)11(lim42 、第20頁/共23頁 5 5、nnnn1)321(lim 三、三、 利用極限存在準則證明數(shù)列利用極限存在準則證明數(shù)列,.222,22,2 的極限存在,并求的極限存在,并求出該極限出該極限 .
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工作服定做合同協(xié)議
- 冷鏈物流體系建設與維護合同
- 承包韻達快遞業(yè)務合同書
- 路面硬化施工合同協(xié)議書
- 抵押房屋借款合同
- 新能源研發(fā)及生產供應合同
- 南京藝術學院《生物化學上實驗》2023-2024學年第二學期期末試卷
- 華南師范大學《護理學基礎實驗(2)》2023-2024學年第二學期期末試卷
- 山西財貿職業(yè)技術學院《化學與創(chuàng)業(yè)》2023-2024學年第二學期期末試卷
- 煙臺工程職業(yè)技術學院《管理工程數(shù)學基礎一》2023-2024學年第二學期期末試卷
- 中國結核病預防性治療指南
- 危重癥呼吸支持治療
- 新課標初中語文7-9年級必背古詩文言文
- 不忘教育初心-牢記教師使命課件
- 藥品不良反應及不良反應報告課件
- FSC認證培訓材料
- Germany introduction2-德國國家介紹2
- 精素材:描寫植物的好詞好句好段
- 急危重癥患者靜脈通路的建立與管理月教學課件
- 【高中語文】《登岳陽樓》課件17張+統(tǒng)編版高中語文必修下冊
- 火力發(fā)電廠總經理崗位規(guī)范
評論
0/150
提交評論