版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、現(xiàn)代控制理論基礎(chǔ)2第第4章章 控制系統(tǒng)的狀態(tài)空間設(shè)計(jì)控制系統(tǒng)的狀態(tài)空間設(shè)計(jì)4.1 狀態(tài)反饋和輸出反饋狀態(tài)反饋和輸出反饋4.2 極點(diǎn)配置極點(diǎn)配置4.4 狀態(tài)觀測(cè)器設(shè)計(jì)狀態(tài)觀測(cè)器設(shè)計(jì)4.5 帶狀態(tài)觀測(cè)器的狀態(tài)反饋閉環(huán)系統(tǒng)帶狀態(tài)觀測(cè)器的狀態(tài)反饋閉環(huán)系統(tǒng)34.1 狀態(tài)反饋與輸出反饋狀態(tài)反饋與輸出反饋 4.1.1 狀態(tài)反饋狀態(tài)反饋 將被控系統(tǒng)將被控系統(tǒng) (A,B,C)的狀態(tài)變量的狀態(tài)變量, 按照線性反饋的規(guī)律反饋至按照線性反饋的規(guī)律反饋至輸入端輸入端, 構(gòu)成閉環(huán)系統(tǒng)構(gòu)成閉環(huán)系統(tǒng), 這種控制規(guī)律稱為狀態(tài)反饋這種控制規(guī)律稱為狀態(tài)反饋, 方框圖如下方框圖如下其中:其中:K稱為狀態(tài)反饋陣稱為狀態(tài)反饋陣, r n
2、常數(shù)陣常數(shù)陣AuxyCBKr4 下面推導(dǎo)狀態(tài)反饋閉環(huán)系統(tǒng)的數(shù)學(xué)模型下面推導(dǎo)狀態(tài)反饋閉環(huán)系統(tǒng)的數(shù)學(xué)模型 由此可見(jiàn)由此可見(jiàn), 經(jīng)過(guò)狀態(tài)反饋后經(jīng)過(guò)狀態(tài)反饋后, 系數(shù)矩陣系數(shù)矩陣C和和B沒(méi)有變化沒(méi)有變化, 僅僅是系統(tǒng)矩陣發(fā)生了變化僅僅是系統(tǒng)矩陣發(fā)生了變化, 變成了變成了(ABK). 也就是說(shuō)狀態(tài)也就是說(shuō)狀態(tài)反饋矩陣反饋矩陣K的引入的引入, 沒(méi)有增加新的狀態(tài)變量沒(méi)有增加新的狀態(tài)變量, 也沒(méi)有增加系也沒(méi)有增加系統(tǒng)的維數(shù)統(tǒng)的維數(shù), 但可以通過(guò)但可以通過(guò)K陣的選擇自由地改變閉環(huán)系統(tǒng)的特陣的選擇自由地改變閉環(huán)系統(tǒng)的特征值征值, 從而使系統(tǒng)達(dá)到所要求的性能從而使系統(tǒng)達(dá)到所要求的性能.狀態(tài)反饋律狀態(tài)反饋律 u =
3、r KxxAxBuyCx()xABK xBryCx簡(jiǎn)記為簡(jiǎn)記為K(A BK),B,C54.1.2 輸出反饋輸出反饋 輸出反饋是將受控系統(tǒng)的輸出變量輸出反饋是將受控系統(tǒng)的輸出變量, 按照線性反饋規(guī)律反饋按照線性反饋規(guī)律反饋到輸入端到輸入端, 構(gòu)成閉環(huán)系統(tǒng)構(gòu)成閉環(huán)系統(tǒng). 這種控制規(guī)律稱為輸出反饋這種控制規(guī)律稱為輸出反饋. 經(jīng)典經(jīng)典控制理論中所討論的反饋就是這種反饋控制理論中所討論的反饋就是這種反饋, 其結(jié)構(gòu)圖如下其結(jié)構(gòu)圖如下. AuxyCBHr6狀態(tài)反饋控制律為狀態(tài)反饋控制律為 u = r H y 可得輸出反饋閉環(huán)系統(tǒng)的狀態(tài)空間表達(dá)式可得輸出反饋閉環(huán)系統(tǒng)的狀態(tài)空間表達(dá)式 ()xABHC xBryC
4、x簡(jiǎn)記為簡(jiǎn)記為H(A BHC ),B,C. 由此可見(jiàn)由此可見(jiàn), 與狀態(tài)反饋一樣與狀態(tài)反饋一樣, 經(jīng)過(guò)輸出反饋后經(jīng)過(guò)輸出反饋后, 閉環(huán)系統(tǒng)同閉環(huán)系統(tǒng)同樣沒(méi)有引入新的狀態(tài)變量樣沒(méi)有引入新的狀態(tài)變量, 僅僅是系統(tǒng)矩陣變成了僅僅是系統(tǒng)矩陣變成了(A-BHC). 比較這兩種反饋形式比較這兩種反饋形式, 若令若令K = HC, 則則Kx = HCx = Hy. 因此輸因此輸出反饋只是狀態(tài)反饋的一種特殊情況出反饋只是狀態(tài)反饋的一種特殊情況.74.1.3 閉環(huán)系統(tǒng)的能控性和能觀測(cè)性閉環(huán)系統(tǒng)的能控性和能觀測(cè)性 定理定理4-1 狀態(tài)反饋不改變受控系統(tǒng)狀態(tài)反饋不改變受控系統(tǒng)0(A, B, C)的能控的能控性性, 但
5、卻不一定保持系統(tǒng)的但卻不一定保持系統(tǒng)的能觀測(cè)性(其證明后置)能觀測(cè)性(其證明后置). 證明證明 因?yàn)樵芸叵到y(tǒng)因?yàn)樵芸叵到y(tǒng)0(A,B,C )的能控性矩陣為的能控性矩陣為 B AB An1B 而狀態(tài)反饋閉環(huán)系統(tǒng)而狀態(tài)反饋閉環(huán)系統(tǒng)K的能控性矩陣為的能控性矩陣為 B (A BK)B (A BK)n1B (A BK)B=AB BKB, 這表明這表明(A BK)B的列向量可以由的列向量可以由B AB的列向量的線性組合來(lái)表示的列向量的線性組合來(lái)表示. (A BK)2B的列向量可以的列向量可以由由B AB A2B的列向量的線性組合來(lái)表示的列向量的線性組合來(lái)表示. B (A BK) (A BK) n 1B的
6、列向量可以由的列向量可以由B AB An1B的列向量的線的列向量的線性組合來(lái)表示性組合來(lái)表示. 因此有因此有8 rank B (A BK)B (A BK)n1B rank B AB An1B 而受控系統(tǒng)又可認(rèn)為是系統(tǒng)而受控系統(tǒng)又可認(rèn)為是系統(tǒng)K(A BK),B,C通過(guò)通過(guò)K陣正反饋陣正反饋構(gòu)成的狀態(tài)反饋系統(tǒng)構(gòu)成的狀態(tài)反饋系統(tǒng). 于是有于是有 rank B AB An1B rankB (A BK)B (A BK)n1B兩不等式同時(shí)成立兩不等式同時(shí)成立, 那么那么 rank B AB An1B =rankB (A BK)B (A BK)n1B所以狀態(tài)反饋前后系統(tǒng)的能控性不變所以狀態(tài)反饋前后系統(tǒng)的能控
7、性不變.A-BKuxyCB-Kr9 定理定理4-2 輸出反饋系統(tǒng)不改變?cè)芸叵到y(tǒng)輸出反饋系統(tǒng)不改變?cè)芸叵到y(tǒng) 0的能控性和的能控性和能觀測(cè)性能觀測(cè)性. 證明證明 因?yàn)檩敵龇答伿菭顟B(tài)反饋的一種特殊情況因?yàn)檩敵龇答伿菭顟B(tài)反饋的一種特殊情況, 因此輸出反因此輸出反饋和狀態(tài)反饋一樣饋和狀態(tài)反饋一樣, 也保持了受控系統(tǒng)的能控性不變也保持了受控系統(tǒng)的能控性不變. 關(guān)于能觀測(cè)性不變關(guān)于能觀測(cè)性不變, 可由輸出反饋前后兩系統(tǒng)的能觀測(cè)矩陣可由輸出反饋前后兩系統(tǒng)的能觀測(cè)矩陣 仿照定理仿照定理4-1的證明方法的證明方法, 可以證明上述兩能觀測(cè)性矩陣的秩可以證明上述兩能觀測(cè)性矩陣的秩相等相等, 因此輸出反饋保持原受控
8、系統(tǒng)的能觀測(cè)性不變因此輸出反饋保持原受控系統(tǒng)的能觀測(cè)性不變.1nCCACA1()()nCC ABHCC ABHC和和10解:解:系統(tǒng)是能控的且能觀測(cè)系統(tǒng)是能控的且能觀測(cè). 引入引入K=3 1后后, 閉環(huán)系統(tǒng)閉環(huán)系統(tǒng) K的狀的狀態(tài)空間表達(dá)式態(tài)空間表達(dá)式 例例4-1 設(shè)系統(tǒng)的狀態(tài)空間表達(dá)式為設(shè)系統(tǒng)的狀態(tài)空間表達(dá)式為 試分析系統(tǒng)引入狀態(tài)反饋試分析系統(tǒng)引入狀態(tài)反饋K = 3 1后的能控性和能觀測(cè)性后的能控性和能觀測(cè)性.xxx21101321yuxxx21100021yrQc=0120Qo=1 21 2系統(tǒng)系統(tǒng) K是能控的,但不是能觀測(cè)的。是能控的,但不是能觀測(cè)的。 0212(), 1174coCQBA
9、BQCA114.2 極點(diǎn)配置極點(diǎn)配置 控制系統(tǒng)的穩(wěn)定性和動(dòng)態(tài)性能主要取決于系控制系統(tǒng)的穩(wěn)定性和動(dòng)態(tài)性能主要取決于系統(tǒng)的閉環(huán)極點(diǎn)在根平面上的分布統(tǒng)的閉環(huán)極點(diǎn)在根平面上的分布. 因此在進(jìn)行系統(tǒng)因此在進(jìn)行系統(tǒng)設(shè)計(jì)時(shí)設(shè)計(jì)時(shí), 可以根據(jù)對(duì)系統(tǒng)性能的要求可以根據(jù)對(duì)系統(tǒng)性能的要求, 規(guī)定系統(tǒng)的規(guī)定系統(tǒng)的閉環(huán)極點(diǎn)應(yīng)有的位置閉環(huán)極點(diǎn)應(yīng)有的位置. 所謂所謂極點(diǎn)配置極點(diǎn)配置, 就是通過(guò)選就是通過(guò)選擇適當(dāng)?shù)姆答佇问胶头答伨仃嚀襁m當(dāng)?shù)姆答佇问胶头答伨仃? 使系統(tǒng)的閉環(huán)極點(diǎn)使系統(tǒng)的閉環(huán)極點(diǎn)恰好配置在所希望的位置上恰好配置在所希望的位置上, 以獲得所希望的動(dòng)態(tài)以獲得所希望的動(dòng)態(tài)性能性能.1213 4.2.1 狀態(tài)反饋極點(diǎn)配
10、置狀態(tài)反饋極點(diǎn)配置 1 極點(diǎn)配置定理極點(diǎn)配置定理 定理定理4-3 受控系統(tǒng)受控系統(tǒng)0(A,B,C)利用狀態(tài)反饋矩陣?yán)脿顟B(tài)反饋矩陣K, 能使其能使其閉環(huán)極點(diǎn)任意配置的閉環(huán)極點(diǎn)任意配置的充要條件充要條件是受控系統(tǒng)是受控系統(tǒng) 0完全能控完全能控. 證明證明 為簡(jiǎn)單起見(jiàn)為簡(jiǎn)單起見(jiàn), 設(shè)受控系統(tǒng)設(shè)受控系統(tǒng)o為單變量系統(tǒng)為單變量系統(tǒng), 其狀態(tài)空其狀態(tài)空間表達(dá)式為間表達(dá)式為CxBAxxyu 充分性:即若充分性:即若 0完全能控完全能控, 則閉環(huán)極點(diǎn)必能任意配置則閉環(huán)極點(diǎn)必能任意配置. 設(shè)設(shè) 0完全能控完全能控, 則必存在非奇異線性變換則必存在非奇異線性變換 , 將將 它化成能控標(biāo)準(zhǔn)型它化成能控標(biāo)準(zhǔn)型xPx
11、xCyuBxAx 111100010aaannAPPA1001BPB11cccnnCPC15受控系統(tǒng)受控系統(tǒng) 0的傳遞函數(shù)為的傳遞函數(shù)為nnnnnnnasasascscscssG11111110)()(BAIC取狀態(tài)反饋陣為取狀態(tài)反饋陣為 nkkk21K)()()(1000101211nnnkakakaKBA)(KBA則閉環(huán)的系統(tǒng)矩陣則閉環(huán)的系統(tǒng)矩陣 16)()()()(1111111kaskascscscssGnnnnnnnKBKBAIC設(shè)希望的閉環(huán)極點(diǎn)為設(shè)希望的閉環(huán)極點(diǎn)為s1, s2, , sn, 則希望的閉環(huán)特征多項(xiàng)式為則希望的閉環(huán)特征多項(xiàng)式為 (s s1) (s s2) (s sn)
12、= sn + a1*s n 1 + an*而閉環(huán)系統(tǒng)的傳遞函數(shù)為而閉環(huán)系統(tǒng)的傳遞函數(shù)為其閉環(huán)特征多項(xiàng)式為其閉環(huán)特征多項(xiàng)式為 *121111nnnnnKkkkaaaaaa111|()|()()nnnnsIABKsaksak 17根據(jù)狀態(tài)反饋控制律在線性變換前后的表達(dá)式根據(jù)狀態(tài)反饋控制律在線性變換前后的表達(dá)式urKxrKPxrKx1PKK可得到原系統(tǒng)可得到原系統(tǒng) 0的狀態(tài)反饋陣為的狀態(tài)反饋陣為 必要性必要性: 即若原系統(tǒng)即若原系統(tǒng) 0可由狀態(tài)反饋任意配置極點(diǎn)可由狀態(tài)反饋任意配置極點(diǎn), 則則 0完全能控完全能控. 采用反證法采用反證法, 即假設(shè)即假設(shè) 0通過(guò)狀態(tài)反饋可任意通過(guò)狀態(tài)反饋可任意配置極點(diǎn)配
13、置極點(diǎn), 但但 0為不完全能控為不完全能控. 因?yàn)橄到y(tǒng)因?yàn)橄到y(tǒng) 0不完全能控不完全能控, 故必可采用線性變換故必可采用線性變換, 將系統(tǒng)分將系統(tǒng)分解為能控和不能控兩部分解為能控和不能控兩部分, xCCBAAAx0021112yuxccxK ruccKKK引入狀態(tài)反饋引入狀態(tài)反饋18對(duì)應(yīng)的特征多項(xiàng)式為對(duì)應(yīng)的特征多項(xiàng)式為112111200ccccAB KAB KBxxrAyCCx 11211()()()0()cccccccsIAB KAB KsIABKsIAsIAB KsIA 系統(tǒng)變?yōu)橄到y(tǒng)變?yōu)樯鲜秸f(shuō)明上式說(shuō)明, 利用狀態(tài)反饋只能改變系統(tǒng)能控部分的極點(diǎn)利用狀態(tài)反饋只能改變系統(tǒng)能控部分的極點(diǎn), 而不而
14、不能改變不能控部分的極點(diǎn)能改變不能控部分的極點(diǎn). 也就是說(shuō)也就是說(shuō), 在這種情況下在這種情況下, 不可能不可能任意配置系統(tǒng)的全部極點(diǎn)任意配置系統(tǒng)的全部極點(diǎn), 這與假設(shè)相矛盾這與假設(shè)相矛盾, 因此系統(tǒng)是完全因此系統(tǒng)是完全能控的能控的, 必要性得證必要性得證. 192. 性質(zhì)性質(zhì) 狀態(tài)反饋不能改變系統(tǒng)的狀態(tài)反饋不能改變系統(tǒng)的零點(diǎn)零點(diǎn). 由上述定理的證明過(guò)程中由上述定理的證明過(guò)程中, 狀態(tài)反饋前后傳遞函數(shù)的分子多項(xiàng)式相同狀態(tài)反饋前后傳遞函數(shù)的分子多項(xiàng)式相同, 也就是說(shuō)狀態(tài)反饋不也就是說(shuō)狀態(tài)反饋不能改變系統(tǒng)的零點(diǎn)能改變系統(tǒng)的零點(diǎn). 由于狀態(tài)反饋可以任意配置極點(diǎn)由于狀態(tài)反饋可以任意配置極點(diǎn), 因此有可因
15、此有可能使系統(tǒng)產(chǎn)生零、極點(diǎn)對(duì)消能使系統(tǒng)產(chǎn)生零、極點(diǎn)對(duì)消, 從而使?fàn)顟B(tài)反饋不能保持原系統(tǒng)的從而使?fàn)顟B(tài)反饋不能保持原系統(tǒng)的能觀測(cè)性能觀測(cè)性. 這就回答了前面曾提出的問(wèn)題這就回答了前面曾提出的問(wèn)題. 只有當(dāng)原系統(tǒng)不含有只有當(dāng)原系統(tǒng)不含有零點(diǎn)時(shí)零點(diǎn)時(shí), 狀態(tài)反饋才能保持原系統(tǒng)的能觀測(cè)性狀態(tài)反饋才能保持原系統(tǒng)的能觀測(cè)性. 該性質(zhì)適用于單該性質(zhì)適用于單輸入系統(tǒng)輸入系統(tǒng), 但不適用于多輸入系統(tǒng)但不適用于多輸入系統(tǒng). 當(dāng)受控系統(tǒng)不完全能控時(shí)當(dāng)受控系統(tǒng)不完全能控時(shí), 狀態(tài)反饋只能任意配置系統(tǒng)狀態(tài)反饋只能任意配置系統(tǒng)能能控部分的極點(diǎn)控部分的極點(diǎn), 而不能改變不能控部分的極點(diǎn)而不能改變不能控部分的極點(diǎn).* 上述極點(diǎn)
16、配置定理對(duì)多變量系統(tǒng)也是成立的上述極點(diǎn)配置定理對(duì)多變量系統(tǒng)也是成立的, 區(qū)別在于后區(qū)別在于后者的狀態(tài)反饋陣者的狀態(tài)反饋陣K不是唯一的不是唯一的, 而對(duì)單變量系統(tǒng)而對(duì)單變量系統(tǒng)K陣是唯一的陣是唯一的. 原原因在于多變量系統(tǒng)對(duì)應(yīng)的因在于多變量系統(tǒng)對(duì)應(yīng)的K陣不是唯一的陣不是唯一的. 203K陣的求法陣的求法 在以上充分性的證明過(guò)程中實(shí)際上已經(jīng)給出了求取在以上充分性的證明過(guò)程中實(shí)際上已經(jīng)給出了求取狀態(tài)反饋狀態(tài)反饋K陣的方法陣的方法. 利用能控標(biāo)準(zhǔn)形求利用能控標(biāo)準(zhǔn)形求K陣陣. 首先求將首先求將 0變換成能控標(biāo)準(zhǔn)變換成能控標(biāo)準(zhǔn)形的形的線性變換線性變換P陣陣. 然后根據(jù)要求的極點(diǎn)配置然后根據(jù)要求的極點(diǎn)配置,
17、 計(jì)算狀態(tài)計(jì)算狀態(tài)反饋陣反饋陣 . *1111nnnnKaaaaaaK 該方法比較麻煩該方法比較麻煩, 但對(duì)高階系統(tǒng)是一種通用的計(jì)算方法,但對(duì)高階系統(tǒng)是一種通用的計(jì)算方法,在利用計(jì)算機(jī)求在利用計(jì)算機(jī)求K陣時(shí)陣時(shí), 通常采用這種方法通常采用這種方法.最后將最后將 變換成對(duì)原系統(tǒng)變換成對(duì)原系統(tǒng) 0的狀態(tài)反饋陣的狀態(tài)反饋陣K, . K1PKK21 直接求直接求K陣的方法陣的方法。 首先根據(jù)要求的極點(diǎn)配置首先根據(jù)要求的極點(diǎn)配置, 寫出希望的閉環(huán)特征多寫出希望的閉環(huán)特征多項(xiàng)式項(xiàng)式. 然后令狀態(tài)反饋閉環(huán)系統(tǒng)的特征多項(xiàng)式然后令狀態(tài)反饋閉環(huán)系統(tǒng)的特征多項(xiàng)式 = 希望的特征多項(xiàng)式希望的特征多項(xiàng)式得到得到n個(gè)代數(shù)
18、方程個(gè)代數(shù)方程. 求解這個(gè)代數(shù)方程組求解這個(gè)代數(shù)方程組, 即可求出即可求出K陣陣.這種方法適用于低階系統(tǒng)手工計(jì)算這種方法適用于低階系統(tǒng)手工計(jì)算K陣的場(chǎng)合陣的場(chǎng)合.|()|sIABK 22 原系統(tǒng)是完全能控的原系統(tǒng)是完全能控的, 通過(guò)狀態(tài)反饋可以實(shí)現(xiàn)任意的極通過(guò)狀態(tài)反饋可以實(shí)現(xiàn)任意的極點(diǎn)配置。設(shè)點(diǎn)配置。設(shè) ,則狀態(tài)反饋閉環(huán)系統(tǒng)的特征多項(xiàng)式則狀態(tài)反饋閉環(huán)系統(tǒng)的特征多項(xiàng)式為為14rankrank221BABn1212212121221()1 21 2( 32 )( 2)( 1 2 ) (1 2 )( 1)skksIA BKkskskk skkkk xxx01211112yu 例例4-2 已知系統(tǒng)的狀
19、態(tài)空間表達(dá)式為已知系統(tǒng)的狀態(tài)空間表達(dá)式為 試求使?fàn)顟B(tài)反饋系統(tǒng)具有極點(diǎn)為試求使?fàn)顟B(tài)反饋系統(tǒng)具有極點(diǎn)為 1和和 2的狀態(tài)反饋陣的狀態(tài)反饋陣K.解:解: 因?yàn)橐驗(yàn)?2 Kkk23而希望的特征多項(xiàng)式為而希望的特征多項(xiàng)式為 (s+1) (s+2) = s2 + 3s + 2可解得:可解得: k1 = 4, k2 = 1 K = k1 k2 = 4 1 r 1u22x1x21 y424 從上述課程的講述中我們知道,在受控系統(tǒng)狀態(tài)完全能控從上述課程的講述中我們知道,在受控系統(tǒng)狀態(tài)完全能控的條件下引入狀態(tài)反饋,可以任意配置閉環(huán)極點(diǎn)但是不能夠改的條件下引入狀態(tài)反饋,可以任意配置閉環(huán)極點(diǎn)但是不能夠改變以下幾個(gè)參數(shù)
20、:變以下幾個(gè)參數(shù): 閉環(huán)零點(diǎn);閉環(huán)零點(diǎn); 閉環(huán)極點(diǎn)的個(gè)數(shù);閉環(huán)極點(diǎn)的個(gè)數(shù); 閉環(huán)極點(diǎn)確定之后的傳函系數(shù)。閉環(huán)極點(diǎn)確定之后的傳函系數(shù)。 因此,憑借單一的狀態(tài)反饋不能夠達(dá)到要求因此,憑借單一的狀態(tài)反饋不能夠達(dá)到要求引入輸入變引入輸入變換器和串聯(lián)補(bǔ)償器的狀態(tài)反饋形式。換器和串聯(lián)補(bǔ)償器的狀態(tài)反饋形式。4.2.3 具有輸入變換器和串聯(lián)補(bǔ)償器的狀態(tài)反饋反饋極點(diǎn)配置具有輸入變換器和串聯(lián)補(bǔ)償器的狀態(tài)反饋反饋極點(diǎn)配置25 狀態(tài)結(jié)構(gòu)圖如上圖所示:狀態(tài)結(jié)構(gòu)圖如上圖所示: 是原受控系統(tǒng);是原受控系統(tǒng); :串:串聯(lián)補(bǔ)償器;聯(lián)補(bǔ)償器;F:比例環(huán)節(jié),有它來(lái)充當(dāng)輸入變換器。比例環(huán)節(jié),有它來(lái)充當(dāng)輸入變換器。FK( )y t(
21、)r t0( )G s( )cG s0( )G s( )cG s圖圖4.4 具有輸入變換器和串聯(lián)補(bǔ)償器的狀態(tài)反饋系統(tǒng)具有輸入變換器和串聯(lián)補(bǔ)償器的狀態(tài)反饋系統(tǒng)26 設(shè)計(jì)的基本原理:設(shè)計(jì)的基本原理:根據(jù)期望的閉環(huán)傳函設(shè)計(jì)串聯(lián)補(bǔ)償器根據(jù)期望的閉環(huán)傳函設(shè)計(jì)串聯(lián)補(bǔ)償器 ,解決:,解決: a) 極點(diǎn)的個(gè)極點(diǎn)的個(gè)數(shù)定義,數(shù)定義,b) 閉環(huán)的零點(diǎn)配置;閉環(huán)的零點(diǎn)配置;通過(guò)狀態(tài)反饋通過(guò)狀態(tài)反饋K實(shí)現(xiàn)閉環(huán)的極點(diǎn)配置;實(shí)現(xiàn)閉環(huán)的極點(diǎn)配置;根據(jù)閉環(huán)傳遞系數(shù)確定輸入變換器根據(jù)閉環(huán)傳遞系數(shù)確定輸入變換器F。 下面,將通過(guò)一個(gè)具體的例子來(lái)講述上述方法的具體實(shí)施過(guò)程。下面,將通過(guò)一個(gè)具體的例子來(lái)講述上述方法的具體實(shí)施過(guò)程。(
22、 )cG s例例4.3 已知開(kāi)環(huán)控制系統(tǒng)的結(jié)構(gòu)圖:已知開(kāi)環(huán)控制系統(tǒng)的結(jié)構(gòu)圖:( )y t1s( )u t21s27和期望的閉環(huán)傳函:和期望的閉環(huán)傳函:24000( )(14.4100)(40)dG ssss( )cG s( )cG s試:試:根據(jù)期望的閉環(huán)傳函設(shè)計(jì)串聯(lián)補(bǔ)償器根據(jù)期望的閉環(huán)傳函設(shè)計(jì)串聯(lián)補(bǔ)償器 ;狀態(tài)反饋矩陣狀態(tài)反饋矩陣K;輸入變換器輸入變換器F。 解:解:1. 設(shè)計(jì)設(shè)計(jì) ; 先寫出開(kāi)環(huán)控制系統(tǒng)的傳函和狀態(tài)空間表達(dá)式:先寫出開(kāi)環(huán)控制系統(tǒng)的傳函和狀態(tài)空間表達(dá)式:22( ),pGsss010( )( )( ),012( )10( ).ttu ty tt xxx28( )dGs1( ),
23、2.5cG ss 對(duì)比期望的閉環(huán)傳函對(duì)比期望的閉環(huán)傳函 ,需要增加一個(gè)極點(diǎn),方便起見(jiàn),需要增加一個(gè)極點(diǎn),方便起見(jiàn),選擇串聯(lián)補(bǔ)償器的傳函,選擇串聯(lián)補(bǔ)償器的傳函 設(shè)計(jì)串聯(lián)補(bǔ)償器的輸入為設(shè)計(jì)串聯(lián)補(bǔ)償器的輸入為 ,輸出為,輸出為 ,于是得到對(duì)應(yīng)的狀,于是得到對(duì)應(yīng)的狀態(tài)空間表達(dá)式為態(tài)空間表達(dá)式為0100( )012( )0( ),002.51( )100( ).ttu ty tt xxx( )u t3( )x t 此時(shí),設(shè)計(jì)的開(kāi)環(huán)傳函的極點(diǎn)為此時(shí),設(shè)計(jì)的開(kāi)環(huán)傳函的極點(diǎn)為0,-1,-2.5。下面,將其。下面,將其按期望的閉環(huán)傳函的極點(diǎn)位置進(jìn)行配置,按期望的閉環(huán)傳函的極點(diǎn)位置進(jìn)行配置, 于是要設(shè)計(jì)狀態(tài)反饋于
24、是要設(shè)計(jì)狀態(tài)反饋矩陣矩陣K。 29123Kkkk2. 設(shè)計(jì)狀態(tài)反饋矩陣設(shè)計(jì)狀態(tài)反饋矩陣K。設(shè)設(shè) ,則對(duì)應(yīng)的閉環(huán)系統(tǒng)的特征多項(xiàng)式,則對(duì)應(yīng)的閉環(huán)系統(tǒng)的特征多項(xiàng)式對(duì)比期望傳函的分母多項(xiàng)式對(duì)比期望傳函的分母多項(xiàng)式解得解得2( )( )(1)(2.5)cpG s Gss ss323231()(3.5)(2.52)2sIABKsk skk sk232(14.4100)(40)54.46764000ssssss2000311.350.9K 3. 設(shè)計(jì)輸入變換器設(shè)計(jì)輸入變換器F。狀態(tài)反饋引入前的傳遞函數(shù)為狀態(tài)反饋引入前的傳遞函數(shù)為由于狀態(tài)反饋不改變系統(tǒng)傳函的分子多項(xiàng)式,則輸入變換器由于狀態(tài)反饋不改變系統(tǒng)傳函的
25、分子多項(xiàng)式,則輸入變換器30畫出狀態(tài)反饋閉環(huán)系統(tǒng)的結(jié)構(gòu)圖畫出狀態(tài)反饋閉環(huán)系統(tǒng)的結(jié)構(gòu)圖4000 22000F 31說(shuō)明:在上述情形之外,我們也可能遇到如下的情形說(shuō)明:在上述情形之外,我們也可能遇到如下的情形需要追加零點(diǎn):需要追加零點(diǎn):例如:期望的閉環(huán)傳函和受控系統(tǒng)的傳函分別為例如:期望的閉環(huán)傳函和受控系統(tǒng)的傳函分別為因此可以通過(guò)串聯(lián)補(bǔ)償器準(zhǔn)確提供這個(gè)零點(diǎn),還需要提供一個(gè)極點(diǎn),因此可以通過(guò)串聯(lián)補(bǔ)償器準(zhǔn)確提供這個(gè)零點(diǎn),還需要提供一個(gè)極點(diǎn),須保證極點(diǎn)是穩(wěn)定極點(diǎn)(須保證極點(diǎn)是穩(wěn)定極點(diǎn)(S平面的左半平面)的前提下可以任意選取,平面的左半平面)的前提下可以任意選取,于是串聯(lián)補(bǔ)償器的傳遞函數(shù)可以選為于是串聯(lián)補(bǔ)
26、償器的傳遞函數(shù)可以選為需要移動(dòng)零點(diǎn):需要移動(dòng)零點(diǎn):受控系統(tǒng)的傳函和期望傳函分別為受控系統(tǒng)的傳函和期望傳函分別為位此,需要將零點(diǎn)從位此,需要將零點(diǎn)從-0.5移動(dòng)到移動(dòng)到-3.5,實(shí)際上具體的做法是用一個(gè)極,實(shí)際上具體的做法是用一個(gè)極點(diǎn)對(duì)消去零點(diǎn)點(diǎn)對(duì)消去零點(diǎn)-0.5,再添加一個(gè),再添加一個(gè)-3.5的零點(diǎn),于是串聯(lián)補(bǔ)償器的傳函的零點(diǎn),于是串聯(lián)補(bǔ)償器的傳函可以選為可以選為2285.7(3.5)( )(7.0725)(40)dsGssss02( )(1)G ss s3.5( )(0.5)(10)csG sss022(0.5)285.7(3.5)( ),( )(1)(7.0725)(40)dssG sGs
27、s ssss3.5( )2.5csG ss32需要消除零點(diǎn):需要消除零點(diǎn):設(shè)設(shè)需要補(bǔ)償器用一個(gè)極點(diǎn)對(duì)消,并且還需要追加一個(gè)極點(diǎn):需要補(bǔ)償器用一個(gè)極點(diǎn)對(duì)消,并且還需要追加一個(gè)極點(diǎn): 此處特別強(qiáng)調(diào)上述零極相消的點(diǎn)必須在此處特別強(qiáng)調(diào)上述零極相消的點(diǎn)必須在S平面的左半平面,平面的左半平面,另外零極相消也將破壞系統(tǒng)的能控性和能觀性。另外零極相消也將破壞系統(tǒng)的能控性和能觀性。022(0.5)400( ),( )(1)(7.0725)(40)dsG sGss ssss1( )(0.5)(10)cG sss33 輸出反饋有兩種方式輸出反饋有兩種方式, 下面均以多輸入下面均以多輸入-單輸出單輸出(MISO)受受控對(duì)象為例來(lái)討論控對(duì)象為例來(lái)討論. 1輸出反饋至狀態(tài)微分輸出反饋至狀態(tài)微分CxBuAxxyCxHBuAxxyy
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 居家養(yǎng)老食堂合同(2篇)
- 2025年度O2O電商代運(yùn)營(yíng)團(tuán)隊(duì)培訓(xùn)與支持合同3篇
- 二零二五年度酒吧服務(wù)員全職雇傭合同規(guī)范文本3篇
- 二零二五年度生物科技園開(kāi)發(fā)與管理承包合同2篇
- 二零二五版綠色環(huán)保辦公樓房地產(chǎn)買賣代理合同3篇
- 基于二零二五年度的采購(gòu)合同2篇
- 二零二五年攝影攝像與后期制作合同2篇
- 二零二五版板材模板設(shè)計(jì)與制造技術(shù)服務(wù)合同3篇
- 二零二五年度電力系統(tǒng)用變壓器安裝及節(jié)能降耗合同3篇
- 二零二五版土地購(gòu)置與綠色生態(tài)農(nóng)業(yè)合作合同3篇
- 銀行會(huì)計(jì)主管年度工作總結(jié)2024(30篇)
- 教師招聘(教育理論基礎(chǔ))考試題庫(kù)(含答案)
- 2024年秋季學(xué)期學(xué)校辦公室工作總結(jié)
- 上海市12校2025屆高三第一次模擬考試英語(yǔ)試卷含解析
- 三年級(jí)數(shù)學(xué)(上)計(jì)算題專項(xiàng)練習(xí)附答案集錦
- 長(zhǎng)亭送別完整版本
- 《鐵路軌道維護(hù)》課件-更換道岔尖軌作業(yè)
- 股份代持協(xié)議書簡(jiǎn)版wps
- 職業(yè)學(xué)校視頻監(jiān)控存儲(chǔ)系統(tǒng)解決方案
- 《銷售心理學(xué)培訓(xùn)》課件
- 2024年安徽省公務(wù)員錄用考試《行測(cè)》真題及解析
評(píng)論
0/150
提交評(píng)論