版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、數(shù)列復(fù)習(xí)基本知識(shí)點(diǎn)及經(jīng)典結(jié)論總結(jié)1、數(shù)列的概念:數(shù)列是按一定次序排成的一列數(shù)。數(shù)列中的每一個(gè)數(shù)都叫做這個(gè)數(shù)列的項(xiàng)。數(shù)列是一個(gè)定義域?yàn)檎麛?shù)集N*(或它的有限子集1,2,3,n)的特殊函數(shù),如果數(shù)列的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式來表示,則這個(gè)公式就叫做這個(gè)數(shù)列的通項(xiàng)公式。數(shù)列的通項(xiàng)公式也就是相應(yīng)函數(shù)的解析式。如(1)已知,則在數(shù)列的最大項(xiàng)為_(答:);(2)數(shù)列的通項(xiàng)為,其中均為正數(shù),則與的大小關(guān)系為_(答:);(3)已知數(shù)列中,且是遞增數(shù)列,求實(shí)數(shù)的取值范圍(答:);(4)一給定函數(shù)的圖象在下列圖中,并且對(duì)任意,由關(guān)系式得到的數(shù)列滿足,則該函數(shù)的圖象是()(答:A)A B C D遞推關(guān)系
2、式:已知數(shù)列的第一項(xiàng)(或前幾項(xiàng)),且任何一項(xiàng)與它的前一項(xiàng)(前n項(xiàng))間的關(guān)系可以用一個(gè)式子來表示,則這個(gè)式子就叫數(shù)列的遞推關(guān)系式。數(shù)列的分類:按項(xiàng)數(shù)多少,分為有窮數(shù)列、無窮數(shù)列;按項(xiàng)的增減,分為遞增數(shù)列、遞減數(shù)列、擺動(dòng)數(shù)列、常數(shù)列。按項(xiàng)有無界限,分為有界數(shù)列、無界數(shù)列。數(shù)列的前n項(xiàng)和: .已知求的方法(只有一種):即利用公式 =注意:一定不要忘記對(duì)n取值的討論!最后,還應(yīng)檢驗(yàn)當(dāng)n=1的情況是否符合當(dāng)n2的關(guān)系式,從而決定能否將其合并。2.等差數(shù)列的有關(guān)概念:1、 等差數(shù)列的定義:如果數(shù)列從第二項(xiàng)起每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等差數(shù)列,這個(gè)常數(shù)叫等差數(shù)列的公差。即.(或)
3、.(1) 等差數(shù)列的判斷方法:定義法:為等差數(shù)列。 中項(xiàng)法: 為等差數(shù)列。通項(xiàng)公式法:(a,b為常數(shù))為等差數(shù)列。前n項(xiàng)和公式法:(A,B為常數(shù))為等差數(shù)列。如設(shè)是等差數(shù)列,求證:以bn= 為通項(xiàng)公式的數(shù)列為等差數(shù)列。(2)等差數(shù)列的通項(xiàng):或。公式變形為:. 其中a=d, b= d.如(1)等差數(shù)列中,則通項(xiàng)(答:);(2)首項(xiàng)為-24的等差數(shù)列,從第10項(xiàng)起開始為正數(shù),則公差的取值范圍是_(答:)(3)等差數(shù)列的前和:,。公式變形為:,其中A=,B=.注意:已知n,d, , 中的三者可以求另兩者,即所謂的“知三求二”。如(1)數(shù)列 中,前n項(xiàng)和,則,(答:,);(2)已知數(shù)列 的前n項(xiàng)和,求
4、數(shù)列的前項(xiàng)和(答:).(4)等差中項(xiàng):若成等差數(shù)列,則A叫做與的等差中項(xiàng),且。提醒:(1)等差數(shù)列的通項(xiàng)公式及前和公式中,涉及到5個(gè)元素:、及,其中、稱作為基本元素。只要已知這5個(gè)元素中的任意3個(gè),便可求出其余2個(gè),即知3求2。(2)為減少運(yùn)算量,要注意設(shè)元的技巧,如奇數(shù)個(gè)數(shù)成等差,可設(shè)為,(公差為);偶數(shù)個(gè)數(shù)成等差,可設(shè)為,,(公差為2)3.等差數(shù)列的性質(zhì):(1)當(dāng)公差時(shí),等差數(shù)列的通項(xiàng)公式是關(guān)于的一次函數(shù),且斜率為公差;前和是關(guān)于的二次函數(shù)且常數(shù)項(xiàng)為0.(2)若公差,則為遞增等差數(shù)列,若公差,則為遞減等差數(shù)列,若公差,則為常數(shù)列。(3)對(duì)稱性:若是有窮數(shù)列,則與首末兩項(xiàng)等距離的兩項(xiàng)之和都等
5、于首末兩項(xiàng)之和.當(dāng)時(shí),則有,特別地,當(dāng)時(shí),則有.如(1)等差數(shù)列中,則_(答:27);(2)在等差數(shù)列中,且,是其前項(xiàng)和,則A、都小于0,都大于0B、都小于0,都大于0C、都小于0,都大于0D、都小于0,都大于0(答:B)(4) 項(xiàng)數(shù)成等差,則相應(yīng)的項(xiàng)也成等差數(shù)列.即成等差.若、是等差數(shù)列,則、 (、是非零常數(shù))、 ,也成等差數(shù)列,而成等比數(shù)列;若是等比數(shù)列,且,則是等差數(shù)列. 如等差數(shù)列的前n項(xiàng)和為25,前2n項(xiàng)和為100,則它的前3n和為 。(答:225)(5)在等差數(shù)列中,當(dāng)項(xiàng)數(shù)為偶數(shù)時(shí), ;. 項(xiàng)數(shù)為奇數(shù)時(shí), ; ;。 如(1)在等差數(shù)列中,S1122,則_(答:2);(2)項(xiàng)數(shù)為奇數(shù)
6、的等差數(shù)列中,奇數(shù)項(xiàng)和為80,偶數(shù)項(xiàng)和為75,求此數(shù)列的中間項(xiàng)與項(xiàng)數(shù)(答:5;31).(6)單調(diào)性:設(shè)d為等差數(shù)列的公差,則 d>0是遞增數(shù)列;d<0是遞減數(shù)列;d=0是常數(shù)數(shù)列(7)若等差數(shù)列、的前和分別為、,且,則.如設(shè)與是兩個(gè)等差數(shù)列,它們的前項(xiàng)和分別為和,若,那么_(答:)(8) 8、已知成等差數(shù)列,求的最值問題: 若,d<0且滿足,則最大;若,d>0且滿足,則最小. “首正”的遞減等差數(shù)列中,前項(xiàng)和的最大值是所有非負(fù)項(xiàng)之和;“首負(fù)”的遞增等差數(shù)列中,前項(xiàng)和的最小值是所有非正項(xiàng)之和。法一:由不等式組確定出前多少項(xiàng)為非負(fù)(或非正);法二:因等差數(shù)列前項(xiàng)是關(guān)于的二次
7、函數(shù),故可轉(zhuǎn)化為求二次函數(shù)的最值,但要注意數(shù)列的特殊性。上述兩種方法是運(yùn)用了哪種數(shù)學(xué)思想?(函數(shù)思想),由此你能求一般數(shù)列中的最大或最小項(xiàng)嗎?如(1)等差數(shù)列中,問此數(shù)列前多少項(xiàng)和最大?并求此最大值。(答:前13項(xiàng)和最大,最大值為169);(2)若是等差數(shù)列,首項(xiàng),則使前n項(xiàng)和成立的最大正整數(shù)n是 (答:4006)(9)如果兩等差數(shù)列有公共項(xiàng),那么由它們的公共項(xiàng)順次組成的新數(shù)列也是等差數(shù)列,且新等差數(shù)列的公差是原兩等差數(shù)列公差的最小公倍數(shù). 注意:公共項(xiàng)僅是公共的項(xiàng),其項(xiàng)數(shù)不一定相同,即研究.4.等比數(shù)列的有關(guān)概念:如果數(shù)列從第二項(xiàng)起每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等比數(shù)
8、列,這個(gè)常數(shù)叫等比數(shù)列的公比。即 (或(1)等比數(shù)列的判斷方法:定義法,其中或。如(1)一個(gè)等比數(shù)列共有項(xiàng),奇數(shù)項(xiàng)之積為100,偶數(shù)項(xiàng)之積為120,則為_(答:);(2)數(shù)列中,=4+1 ()且=1,若 ,求證:數(shù)列是等比數(shù)列。(2)等比數(shù)列的通項(xiàng):或。如設(shè)等比數(shù)列中,前項(xiàng)和126,求和公比. (答:,或2)(3)等比數(shù)列的前和:當(dāng)時(shí),;當(dāng)時(shí),。如(1)等比數(shù)列中,2,S99=77,求(答:44)特別提醒:等比數(shù)列前項(xiàng)和公式有兩種形式,為此在求等比數(shù)列前項(xiàng)和時(shí),首先要判斷公比是否為1,再由的情況選擇求和公式的形式,當(dāng)不能判斷公比是否為1時(shí),要對(duì)分和兩種情形討論求解。(4)等比中項(xiàng):如果a、G、
9、b三個(gè)數(shù)成等比數(shù)列,那么G叫做a與b的等比中項(xiàng),即G=.提醒:不是任何兩數(shù)都有等比中項(xiàng),只有同號(hào)兩數(shù)才存在等比中項(xiàng),且有兩個(gè)。如已知兩個(gè)正數(shù)的等差中項(xiàng)為A,等比中項(xiàng)為B,則A與B的大小關(guān)系為_(答:AB)提醒:(1)等比數(shù)列的通項(xiàng)公式及前項(xiàng)和公式中,涉及到5個(gè)元素:、及,其中、稱作為基本元素。只要已知這5個(gè)元素中的任意3個(gè),便可求出其余2個(gè),即知3求2;(2)為減少運(yùn)算量,要注意設(shè)元的技巧,如奇數(shù)個(gè)數(shù)成等比,可設(shè)為,(公比為);但偶數(shù)個(gè)數(shù)成等比時(shí),不能設(shè)為,因公比不一定為正數(shù),只有公比為正時(shí)才可如此設(shè),且公比為。如有四個(gè)數(shù),其中前三個(gè)數(shù)成等差數(shù)列,后三個(gè)成等比數(shù)列,且第一個(gè)數(shù)與第四個(gè)數(shù)的和是1
10、6,第二個(gè)數(shù)與第三個(gè)數(shù)的和為12,求此四個(gè)數(shù)。(答:15,,9,3,1或0,4,8,16)5.等比數(shù)列的性質(zhì):(1)對(duì)稱性:若是有窮數(shù)列,則與首末兩項(xiàng)等距離的兩項(xiàng)之積都等于首末兩項(xiàng)之積.即當(dāng)時(shí),則有,特別地,當(dāng)時(shí),則有.如(1)在等比數(shù)列中,公比q是整數(shù),則=_(答:512);(2)各項(xiàng)均為正數(shù)的等比數(shù)列中,若,則 (答:10)。(2) 若是等比數(shù)列,則、成等比數(shù)列;若成等比數(shù)列,則、成等比數(shù)列; 若是等比數(shù)列,且公比,則數(shù)列 ,也是等比數(shù)列。當(dāng),且為偶數(shù)時(shí),數(shù)列 ,是常數(shù)數(shù)列0,它不是等比數(shù)列. 若是等比數(shù)列,且各項(xiàng)均為正數(shù),則成等差數(shù)列。 如(1)已知且,設(shè)數(shù)列滿足,且,則. (答:);(
11、2)在等比數(shù)列中,為其前n項(xiàng)和,若,則的值為_(答:40)(3) 單調(diào)性:若,或則為遞增數(shù)列;若,或 則為遞減數(shù)列;若,則為擺動(dòng)數(shù)列;若,則為常數(shù)列.(4) 當(dāng)時(shí),這里,但,這是等比數(shù)列前項(xiàng)和公式的一個(gè)特征,據(jù)此很容易根據(jù),判斷數(shù)列是否為等比數(shù)列。如若是等比數(shù)列,且,則 (答:1)(5) .如設(shè)等比數(shù)列的公比為,前項(xiàng)和為,若成等差數(shù)列,則的值為_(答:2)(6) 在等比數(shù)列中,當(dāng)項(xiàng)數(shù)為偶數(shù)時(shí),;項(xiàng)數(shù)為奇數(shù)時(shí),.(7)如果數(shù)列既成等差數(shù)列又成等比數(shù)列,那么數(shù)列是非零常數(shù)數(shù)列,故常數(shù)數(shù)列僅是此數(shù)列既成等差數(shù)列又成等比數(shù)列的必要非充分條件。如設(shè)數(shù)列的前項(xiàng)和為(), 關(guān)于數(shù)列有下列三個(gè)命題:若,則既是
12、等差數(shù)列又是等比數(shù)列;若,則是等差數(shù)列;若,則是等比數(shù)列。這些命題中,真命題的序號(hào)是 (答:)等差數(shù)列中,Sm+n=Sm+Sn+mnd;等比數(shù)列中,Sm+n=Sn+qnSm=Sm+qmSn;6.數(shù)列的通項(xiàng)的求法:公式法:等差數(shù)列通項(xiàng)公式;等比數(shù)列通項(xiàng)公式。如已知數(shù)列試寫出其一個(gè)通項(xiàng)公式:_(答:)已知(即)求,用作差法:。如已知的前項(xiàng)和滿足,求(答:);數(shù)列滿足,求(答:)已知求,用作商法:。如數(shù)列中,對(duì)所有的都有,則_(答:)若求用累加法:。如已知數(shù)列滿足,則=_(答:)已知求,用累乘法:。如已知數(shù)列中,前項(xiàng)和,若,求(答:)已知遞推關(guān)系求,用構(gòu)造法(構(gòu)造等差、等比數(shù)列)。特別地,(1)形如
13、、(為常數(shù))的遞推數(shù)列都可以用待定系數(shù)法轉(zhuǎn)化為公比為的等比數(shù)列后,再求。如已知,求(答:);已知,求(答:);(2)形如的遞推數(shù)列都可以用倒數(shù)法求通項(xiàng)。如已知,求(答:);已知數(shù)列滿足=1,求(答:)注意:(1)用求數(shù)列的通項(xiàng)公式時(shí),你注意到此等式成立的條件了嗎?(,當(dāng)時(shí),);(2)一般地當(dāng)已知條件中含有與的混合關(guān)系時(shí),常需運(yùn)用關(guān)系式,先將已知條件轉(zhuǎn)化為只含或的關(guān)系式,然后再求解。如數(shù)列滿足,求(答:)7.數(shù)列求和的常用方法:(1)公式法:直接利用或可通過轉(zhuǎn)化為等差、等比數(shù)列的求和公式求解。特別聲明:運(yùn)用等比數(shù)列求和公式,務(wù)必檢查其公比與1的關(guān)系,必要時(shí)需分類討論.;常用公式:,.如(1)等比
14、數(shù)列的前項(xiàng)和S2,則_(答:);(2)計(jì)算機(jī)是將信息轉(zhuǎn)換成二進(jìn)制數(shù)進(jìn)行處理的。二進(jìn)制即“逢2進(jìn)1”,如表示二進(jìn)制數(shù),將它轉(zhuǎn)換成十進(jìn)制形式是,那么將二進(jìn)制轉(zhuǎn)換成十進(jìn)制數(shù)是_(答:)(2)分組求和法:在直接運(yùn)用公式法求和有困難時(shí),常把數(shù)列的各項(xiàng)分成多個(gè)項(xiàng)或把數(shù)列的項(xiàng)重新組合,使其轉(zhuǎn)化成等差或等比數(shù)列,然后利用公式求和。如求:(答:)(3)倒序相加法:倒序相加法:數(shù)列特點(diǎn):與首末等距離的兩項(xiàng)之和等于首末兩項(xiàng)之和,則采用此法。(聯(lián)系:等差數(shù)列的前n項(xiàng)和推導(dǎo)過程以及高斯小時(shí)后巧解算術(shù)題). 如已知,則_(答:)(4)錯(cuò)位相減法:如果數(shù)列的通項(xiàng)是由一個(gè)等差數(shù)列的通項(xiàng)與一個(gè)等比數(shù)列的通項(xiàng)相乘構(gòu)成,即數(shù)列是一
15、個(gè)“差·比”數(shù)列,那么常選用錯(cuò)位相減法(這也是等比數(shù)列前和公式的推導(dǎo)方法). 如設(shè)為等比數(shù)列,已知,求數(shù)列的首項(xiàng)和公比;求數(shù)列的通項(xiàng)公式.(答:,;); (5)裂項(xiàng)相消法:裂項(xiàng)相消法:把數(shù)列的通項(xiàng)拆成兩項(xiàng)之差,在求和時(shí)一些正負(fù)抵消,從而前n項(xiàng)化成首尾若干少數(shù)項(xiàng)之和。如果數(shù)列的通項(xiàng)可“分裂成兩項(xiàng)差”的形式,且相鄰項(xiàng)分裂后相關(guān)聯(lián),那么常選用裂項(xiàng)相消法求和.常用裂項(xiàng)形式有:; ;,; ;如(1)求和: (答:);(2)在數(shù)列中,且S,則n_(答:99);(6)通項(xiàng)轉(zhuǎn)換法:先對(duì)通項(xiàng)進(jìn)行變形,發(fā)現(xiàn)其內(nèi)在特征,再運(yùn)用分組求和法求和。如求數(shù)列1×4,2×5,3×6,前項(xiàng)和= (答:);求和: (答:)8. “分期付款”、“森林木材”型應(yīng)用問題(1)這類應(yīng)用題一般可轉(zhuǎn)化為等差數(shù)列或等比數(shù)列問題.但在求解過程中,務(wù)必“卡手指
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版入股投資合同協(xié)議書
- 專題03:論述類文本閱讀(考題練習(xí))(解析版)
- 2024版叉車設(shè)備進(jìn)口合同3篇
- 二零二五年度三孩家庭離婚協(xié)議書標(biāo)準(zhǔn)范本2篇
- 2024版專業(yè)服務(wù)采購協(xié)議樣本一
- 2025年度三人合伙企業(yè)信息共享與保密協(xié)議3篇
- 二零二五年度加工承攬合同:服裝定制生產(chǎn)外包2篇
- 2024年土地登記代理人題庫【典優(yōu)】
- 2024年私募股權(quán)投資合伙合同范本版B版
- 2024年適用綿陽租房協(xié)議規(guī)范格式版B版
- 家族族譜資料收集表
- 2024年1月自考18960禮儀學(xué)試題及答案含解析
- Vue.js前端開發(fā)實(shí)戰(zhàn)(第2版)-教學(xué)課件 第1章 初識(shí)Vue
- 事業(yè)單位年度考核實(shí)施方案
- 2024-2029年中國中藥煎藥機(jī)行業(yè)市場(chǎng)現(xiàn)狀分析及競爭格局與投資發(fā)展研究報(bào)告
- 竣工驗(yàn)收消防查驗(yàn)和消防驗(yàn)收
- 衛(wèi)生院崗位風(fēng)險(xiǎn)分級(jí)和監(jiān)管制度工作方案
- 2016-2023年大慶醫(yī)學(xué)高等專科學(xué)校高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫含答案解析
- 供應(yīng)商審核培訓(xùn)教程
- 整合營銷策劃-標(biāo)準(zhǔn)化模板
- 物業(yè)前期介入與承接查驗(yàn)要點(diǎn)精講培訓(xùn)
評(píng)論
0/150
提交評(píng)論