




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2020高考仿真模擬(一) 4套仿真模擬本試卷分第卷 (選擇題)和第卷(非選擇題)兩部分共 150 分,考試時(shí)間 120 分鐘第卷一、選擇題:本大題共 12 小題,每小題 5 分,共 60 分在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的1 設(shè)全集 U 為實(shí)數(shù)集 R, 已知集合 Mx|x240, Nx|x24x30,則圖中陰影部分所表示的集合為 () Ax|x3 Cx|1x2 Dx|x3 或 x0 x|x2 或 x2, Nx|x24x30 x|1x3,又圖中陰影部分所表示的集合是 (?UN)M,即為x|x3 或 xf(e)f(3) Bf(3)f(e)f(2) Cf(e)f(2)f(3) D
2、f(e)f(3)f(2) 答案 D 解析f(x)ln xx,f(x)1ln xx2,令 f(x)0,解得 xe,當(dāng) x(0,e)時(shí),f(x)0,函數(shù) f(x)單調(diào)遞增,當(dāng) x(e,)時(shí),f(x)0,函數(shù) f(x)單調(diào)遞減, 故f(x)在xe處取得最大值 f(e), f(2)f(3)ln 22ln 333ln 22ln 36ln 8ln 960,f(2)f(3)f(2),故選 D. 6 公元前 5 世紀(jì)下半葉開奧斯地方的希波克拉底解決了與化圓為方有關(guān)的化月牙形為方如圖,以 O 為圓心的大圓直徑為 1,以 AB為直徑的半圓面積等于 AO與 BO 所夾四分之一大圓的面積,由此可知,月牙形(圖中陰影部
3、分)區(qū)域的面積可以與一個(gè)正方形的面積相等現(xiàn)在在兩個(gè)圓所圍成的區(qū)域內(nèi)隨機(jī)取一點(diǎn),則該點(diǎn)來(lái)自于陰影所示月牙形區(qū)域的概率是() A.13B.121C.11D.2解析陰影部分的面積等于16?1612121218, 所以根據(jù)幾何概型得陰影所示月牙形區(qū)域的概率 P18184112.故選 B. 答案B 7已知等比數(shù)列an的前 n 項(xiàng)和為 Sn, 且 a112,a2a68(a42),則 S2020() A2201912 B1?122019C2202012 D1?122020答案A 解析由等比數(shù)列的性質(zhì)及 a2a68(a42),得 a248a416,解得 a44.又 a412q3,故 q2,所以 S202012
4、?122020?122201912,故選 A. 8將函數(shù) y2sin?x3cos?x3的圖象向左平移 (0)個(gè)單位長(zhǎng)度,所得圖象對(duì)應(yīng)的函數(shù)恰為奇函數(shù),則 的最小值為 () A.12B.6C.4D.3答案 B 解析根據(jù)題意可得 ysin?2x23,將其圖象向左平移 個(gè)單位長(zhǎng)度,可得 ysin?2x232 的圖象,因?yàn)樵搱D象所對(duì)應(yīng)的函數(shù)恰為奇函數(shù),所以232k(kZ), k23(kZ), 又 0, 所以當(dāng) k1 時(shí), 取得最小值,且 min6,故選 B. 9設(shè) alog20182019,blog20192018,c201812019,則 a,b,c 的大小關(guān)系是() AabcBacbCcabDcb
5、a答案C 解析因?yàn)?1log20182018alog20182019log2018201812,blog20192018201801,故 cab,故選 C. 10已知函數(shù) f(x)x32x1ex1ex,其中 e 是自然對(duì)數(shù)的底數(shù)若 f(a1)f(2a2)2,則實(shí)數(shù) a 的取值范圍是() A.?1,32B.?32,1C.?1,12D.?12,1答案 C 解析令 g(x)f(x)1x32xex1ex, xR.則 g(x)x32x1exexg(x),g(x)在 R 上為奇函數(shù)g(x)3x22ex1ex0220,函數(shù) g(x)在 R 上單調(diào)遞增f(a1)f(2a2)2 可化為 f(a1)1f(2a2)
6、10,即 g(a1)g(2a2)0,即 g(2a2)g(a1)g(1a),2a21a,即 2a2a10,解得1a12.實(shí)數(shù) a 的取值范圍是?1,12.故選 C. 11.已知一圓錐的底面直徑與母線長(zhǎng)相等,一球體與該圓錐的所有母線和底面都相切,則球與圓錐的表面積之比為 () A.23B.49C.2 69D.827答案 B 解析設(shè)圓錐底面圓的半徑為 R,球的半徑為 r,由題意知,圓錐的軸截面是邊長(zhǎng)為 2R的等邊三角形, 球的大圓是該等邊三角形的內(nèi)切圓, 如圖所示,所以 r33R,S球4r24?33R243R2,S圓錐R2RR23R2,所以球與圓錐的表面積之比為S球S圓錐43R23R249,故選 B
7、. 12 已知函數(shù) f(x)為 R 上的奇函數(shù), 且圖象關(guān)于點(diǎn)(2,0)對(duì)稱, 且當(dāng) x(0,2)時(shí),f(x)x3,則函數(shù) f(x)在區(qū)間2018,2021上() A無(wú)最大值B最大值為 0 C最大值為 1 D最大值為1 答案 C 解析因?yàn)楹瘮?shù) f(x)的圖象關(guān)于點(diǎn)(2,0)對(duì)稱,所以 f(4x)f(x)又函數(shù) f(x)是奇函數(shù),所以 f(x)f(x),所以 f(4x)f(x)令tx,得f(4t)f(t),所以函數(shù) f(x)是周期為 4 的周期函數(shù)又函數(shù) f(x)的定義域?yàn)?R,且函數(shù) f(x)是奇函數(shù),所以 f(0)0,f(2)f(2),由函數(shù) f(x)的周期為 4,得 f(2)f(2),所以
8、f(2)f(2),解得 f(2)0.所以 f(2)0.依此類推,可以求得 f(2n)0(nZ)作出函數(shù) f(x)的大致圖象如圖所示,根據(jù)周期性,可得函數(shù) f(x)在區(qū)間2018,2021上的圖象與在區(qū)間 2,1上的圖象完全一樣 . 觀察圖象可知,函數(shù) f(x)在區(qū)間(2,1上單調(diào)遞增,且 f(1)131,又 f(2)0, 所以函數(shù) f(x)在區(qū)間2,1上的最大值是 1, 故函數(shù) f(x)在區(qū)間2018,2021上的最大值也是 1. 第卷本卷包括必考題和選考題兩部分 第 1321 題為必考題,每個(gè)試題考生都必須作答第 2223 題為選考題,考生根據(jù)要求作答二、填空題:本大題共 4 小題,每小題
9、5 分,共 20 分13已知單位向量 e1,e2,且e1,e23,若向量 ae12e2,則|a|_. 答案3 解析因?yàn)閨e1|e2|1, e1,e23,所以|a|2|e12e2|214|e1|e2|cos34|e2|214111243,即|a| 3. 14已知實(shí)數(shù) x,y 滿足?xy10,3xy30,xy10,目標(biāo)函數(shù) zaxy 的最大值 M2,4,則實(shí)數(shù) a 的取值范圍為_答案?12,12解析可行域如圖陰影部分所示, 當(dāng) a0 時(shí), 平移直線 yaxz至(2,3)時(shí),z 有最大值 2a3,故 22a34,得 0a12.當(dāng)1a0 時(shí),平移直線 yaxz 至(2,3)時(shí),z 有最大值 2a3,因
10、 22a34,故12a0.當(dāng) a1 時(shí),平移直線 yaxz 至(0,1)時(shí),z 有最大值 1,不符合題意,故舍去綜上,a?12,12. 15在九章算術(shù)中有稱為“羨除”的五面體體積的求法現(xiàn)有一個(gè)類似于“羨除”的有三條棱互相平行的五面體,其三視圖如圖所示,則該五面體的體積為_答案24 解析由三視圖可得,該幾何體為如圖所示的五面體 ABCEFD,其中,底面 ABC為直角三角形,且BAC90 ,AB4,AC3,側(cè)棱 DB,EC,F(xiàn)A 與底面垂直,且 DB2,ECFA5.過(guò)點(diǎn) D 作 DHBC,DGBA,交EC,F(xiàn)A分別于 H,G,連接 GH,則棱柱 ABCDHG 為直棱柱,四棱錐 DEFGH 的底面為
11、矩形 EFGH,高為 BA.所以 V五面體ABCEFDVABCDHGVDEFGH?1243 21332424. 16對(duì)任一實(shí)數(shù)序列Aa1,a2,a3,定義新序列 A(a2a1,a3a2,a4a3,),它的第 n 項(xiàng)為 an1an.假定序列 (A)的所有項(xiàng)都是 1,且 a12a220,則 a2_. 答案 100 解析令 bnan1an,依題意知數(shù)列bn為等差數(shù)列,且公差為 1,所以 bnb1(n1)1,a1a1,a2a1b1,a3a2b2,anan1bn1,累加得 ana1b1bn1a1(n1)b1?n1? n2?2(n1)a2(n2)a1?n1? n2?2,分別令 n12,n22,得?11a2
12、10a1550,21a220a12100,解得 a12312,a2100. 三、解答題:共 70 分解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟17(本小題滿分 12 分)某學(xué)校為培養(yǎng)學(xué)生的興趣愛(ài)好,提高學(xué)生的綜合素養(yǎng),在高一年級(jí)開設(shè)各種形式的校本課程供學(xué)生選擇(如書法講座、詩(shī)歌鑒賞、奧賽講座等)現(xiàn)統(tǒng)計(jì)了某班 50 名學(xué)生一周用在興趣愛(ài)好方面的學(xué)習(xí)時(shí)間(單位:h)的數(shù)據(jù),按照0,2),2,4) ,4,6),6,8),8,10分成五組,得到了如下的頻率分布直方圖(1)求頻率分布直方圖中m的值及該班學(xué)生一周用在興趣愛(ài)好方面的平均學(xué)習(xí)時(shí)間;(2)從4,6) ,6,8)兩組中按分層抽樣的方法抽取 6 人,再
13、從這 6 人中抽取2 人,求恰有 1 人在6,8)組中的概率解(1)由直方圖可得,0.0620.0820.222m0.0621,所以 m0.1,該班學(xué)生一周用在興趣愛(ài)好方面的平均學(xué)習(xí)時(shí)間為10.1230.1650.470.290.125.08. 故 m的值為 0.1,該班學(xué)生一周用在興趣愛(ài)好方面的平均時(shí)間為 5.08 h. (2)由直方圖可得,4,6)中有 20 人,6,8)中有 10 人,根據(jù)分層抽樣,需要從4,6)中抽取 4 人分別記為 A1,A2,A3,A4,從6,8)中抽取 2 人分別記為 B1,B2,再?gòu)倪@ 6 人中抽取 2 人,所有的抽取方法有 A1A2,A1A3,A1A4,A1B
14、1,A1B2,A2A3,A2A4,A2B1,A2B2,A3A4,A3B1,A3B2,A4B1,A4B2,B1B2,共15 種,這 15 種情況發(fā)生的可能性是相等的其中恰有一人在6,8) 組中的抽取方法有 A1B1,A1B2,A2B1,A2B2,A3B1,A3B2,A4B1,A4B2,共 8 種,所以,從這 6 人中抽取 2 人,恰有 1 人在6,8) 組中的概率為815. 18(本小題滿分 12 分)已知ABC的內(nèi)角 A,B,C 的對(duì)邊分別為 a,b,c,且3cacosBtanAtanB. (1)求角 A的大??;(2)設(shè) AD為 BC 邊上的高,a 3,求 AD的取值范圍解(1)在ABC中,3
15、cacosBtanAtanB,3sinCsinAcosBsinAcosAsinBcosB,即3sinCsinAcosBsinAcosBsinBcosAcosAcosB,3sinA1cosA,則 tanA 3,A3. (2)SABC12ADBC12bcsinA,AD12bc. 由余弦定理得 cosA12b2c2a22bc2bc32bc,0bc3(當(dāng)且僅當(dāng) bc 時(shí)等號(hào)成立),00)的焦點(diǎn)為 F,準(zhǔn)線為l,過(guò)焦點(diǎn) F 的直線交 C 于 A(x1,y1),B(x2,y2)兩點(diǎn),且 y1y24. (1)求拋物線 C 的方程;(2)如圖,點(diǎn) B 在準(zhǔn)線 l 上的投影為 E,D 是 C 上一點(diǎn),且 ADE
16、F,求ABD面積的最小值及此時(shí)直線 AD的方程解(1)依題意 F?p2,0 ,當(dāng)直線 AB的斜率不存在時(shí),y1y2p24,p2. 當(dāng)直線 AB的斜率存在時(shí),設(shè) AB:yk?xp2,由?y22px,yk?xp2,化簡(jiǎn)得 y22pkyp20. 由 y1y24 得 p24,p2. 綜上所述,拋物線 C 的方程為 y24x. (2)設(shè) D(x0,y0),B?t24,t ,易知 t0,則 E(1,t),又由 y1y24,可得 A?4t2,4t. 因?yàn)?kEFt2,ADEF,所以 kAD2t,故直線 AD:y4t2t?x4t2,化簡(jiǎn)得 2xty48t20. 由?y24x,2xty48t20,化簡(jiǎn)得 y22
17、ty816t20,所以 y1y02t,y1y0816t2. 所以|AD|1t24|y1y0| 1t24 ?y1y0?24y1y0 4t2t216t28. 設(shè)點(diǎn) B 到直線 AD的距離為 d,則d?t22t248t24t2?t216t282 4t2. 所以 SABD12|AD|d14?t216t28316,當(dāng)且僅當(dāng) t416,即 t 2時(shí)ABD的面積取得最小值 16. 當(dāng) t2 時(shí),直線 AD:xy30;當(dāng) t2 時(shí),直線 AD:xy30. 21(本小題滿分 12 分)已知函數(shù) f(x)exxa(其中 aR,e 為自然對(duì)數(shù)的底數(shù), e2.71828)(1)若 f(x)0 對(duì)任意的 xR 恒成立,
18、求實(shí)數(shù) a 的取值范圍;(2)設(shè) t 為整數(shù),對(duì)于任意正整數(shù) n,?1nn?2nn?3nn?nnn0 時(shí),x0;f(x)ex10時(shí),x0. 所以 f(x)exxa 在區(qū)間(,0)上單調(diào)遞減,在區(qū)間(0,)上單調(diào)遞增, 所以 f(x)exxa 的最小值為 f(0)e00a1a.由 f(x)0 對(duì)任意的 xR 恒成立,得 f(x)min0,即 1a0,所以 a1,即實(shí)數(shù) a 的取值范圍為1,)(2)由(1)知 exx10,即 1xex,令 xkn(nN*,k0,1,2,n1),則 01knekn,所以?1knn(ekn)nek,?1nn?2nn?3nn?nnne(n1)e(n2)e2e1e01en1e111e1ee111e12,所以?1nn?2nn?3nn?nnn1,所以 t 的最小值為 2. 請(qǐng)考生在第 22、23 題中任選一題作答如果多做,則按所做的第一題計(jì)分作答時(shí)請(qǐng)寫清題號(hào)22(本小題滿分 10 分)選修 44:坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系 xOy中, 已知曲線 M 的參數(shù)方程為?x1cosy1sin( 為參數(shù)),過(guò)原點(diǎn) O 且傾斜角為 的直線 l 交 M 于 A,B 兩點(diǎn),以 O 為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系(1)求 l 和 M的極坐標(biāo)方程;(2)當(dāng)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《高等數(shù)學(xué)》上冊(cè)課件06-05二階常系數(shù)線性齊次微分方程
- 2025年廣告學(xué)基礎(chǔ)知識(shí)能力測(cè)試試卷及答案
- 百貨公司培訓(xùn)
- 直接包裝機(jī)立項(xiàng)投資項(xiàng)目可行性研究報(bào)告
- 《自媒體營(yíng)銷》課件項(xiàng)目一自媒體營(yíng)銷概述
- 多發(fā)肋骨骨折術(shù)后護(hù)理
- 第1章 勾股定理 問(wèn)題解決策略 課件 北師大版數(shù)學(xué)八年級(jí)上冊(cè)
- 內(nèi)科危重患者健康教育
- 4.6.1人體對(duì)外界環(huán)境的感知第2課時(shí) 課件 人教版八年級(jí)生物上冊(cè)
- 營(yíng)養(yǎng)學(xué)電子課件
- 跨國(guó)知識(shí)產(chǎn)權(quán)爭(zhēng)議解決的國(guó)際合作與協(xié)調(diào)
- 幼兒園預(yù)防中暑課件
- 整體施工勞務(wù)服務(wù)方案
- 水泥攪拌樁施工項(xiàng)目進(jìn)度管理措施
- 2002版《水利工程施工機(jī)械臺(tái)時(shí)費(fèi)定額》
- 高分子物理模擬試題+參考答案
- 廢棄物焚燒爐安全操作規(guī)程
- 2025年業(yè)務(wù)員個(gè)人工作計(jì)劃樣本(3篇)
- 職業(yè)技術(shù)學(xué)院“第二課堂成績(jī)單”制度實(shí)施辦法
- 2024年03月廣東珠海華潤(rùn)銀行春季校園招考筆試歷年參考題庫(kù)附帶答案詳解
- 2025年中國(guó)煙草公司招聘筆試參考題庫(kù)含答案解析
評(píng)論
0/150
提交評(píng)論