版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、MBA全國聯(lián)考數(shù)學(xué)考試復(fù)習(xí):基本概念理解需透徹 MBA聯(lián)考數(shù)學(xué)復(fù)習(xí)技巧:掌握基礎(chǔ)知識(shí),包括深刻理解基本概念和定理、熟練運(yùn)用基本數(shù)學(xué)方法。mba數(shù)學(xué)95%以上的題都是考基礎(chǔ)知識(shí)。歷屆高分考生都強(qiáng)調(diào)對(duì)基礎(chǔ)知識(shí)的掌握,試列舉部分觀點(diǎn): (2002數(shù)學(xué)滿分)對(duì)于基本概念力求理解透徹,掌握基本的解題規(guī)律和方法。概念、定義這些東西是構(gòu)件數(shù)學(xué)大廈的基石,其實(shí)到最后的階段有很多人會(huì)發(fā)現(xiàn)很多題不會(huì)做,就是因?yàn)楦拍畈磺?。更何況,如果你細(xì)心推敲往年考題,你會(huì)發(fā)現(xiàn)有些題只能從基本的概念定義出發(fā)才能推出正確的結(jié)果。 (2000年?duì)钤?我認(rèn)為mba數(shù)學(xué)考題并不很難,把基本要領(lǐng)理解透,應(yīng)付考試足夠了,難題怪題用不著做。做題
2、的目的也在于掌握理解概念和熟悉考試題理,但做得太多了完全沒有必要,太浪費(fèi)時(shí)間。數(shù)學(xué)還要注意一個(gè)運(yùn)算問題,因?yàn)楹芫貌挥昧耍荚嚂r(shí)題量和計(jì)算量又很大,就經(jīng)常會(huì)出現(xiàn)2+3=6的問題。 (復(fù)旦第一)我知道自己并不是數(shù)學(xué)天才,所以從不跟難題計(jì)較,但是那些基本題目和中等難度的題是一定要做熟的,而且在第一階段就應(yīng)該做到。 由于去年數(shù)學(xué)考試方式變化,我在最后沖刺階段針對(duì)充分型判斷和選擇題型又進(jìn)行了強(qiáng)化訓(xùn)練。 (315,2002清華,劉賓)數(shù)學(xué):基本概念百讀不厭,典型例題百做不厭。我在高等數(shù)學(xué)導(dǎo)數(shù)、微分、偏導(dǎo)數(shù)等幾個(gè)部分遇到幾道基本概念題目,二個(gè)月內(nèi)反反復(fù)復(fù)做了二十幾遍, 有時(shí)甚至以為書上的一些步驟可以略去,也
3、能得出相同結(jié)論,后來才深入領(lǐng)悟到是自己概念不清楚。這樣做透之后,其他題目有一些小的花招我很快就識(shí)別出來了。 不做偏題做難題,不求做多,但求做透。什么是偏題?僅就一個(gè)非基本概念一直挖下去特別深就是偏題目。比如某些N階行列式。什么是好的難題?要用多個(gè)基本概念巧妙結(jié)合才能解決的問題就是好題。比如概率題中用到了數(shù)列和微積分。 對(duì)于數(shù)學(xué)我還是強(qiáng)調(diào)基本功,在復(fù)習(xí)數(shù)學(xué)的第一步,我選擇了看大學(xué)時(shí)期的課本,盡量的把課本上定理和概念的來龍去脈弄清楚,盡量準(zhǔn)確和清楚的理解概念和公式,這樣你就會(huì)體會(huì)到概念的本質(zhì),即使是最難的、最復(fù)雜的題也是能夠分解成為若干個(gè)小概念的;課后的題,我也盡量做了,因?yàn)檎n后題和參考書上的題有
4、點(diǎn)不同的是它是按你的由不知到知、由淺入深的學(xué)習(xí)進(jìn)度安排的,所以在深度和難度上的連續(xù)性比較好,不象許多的參考書,題目的安排是以讀者已有一定的概念基礎(chǔ)為思路的,所以跳躍性較大,不利于打好基本功,尤其是對(duì)于數(shù)學(xué)基礎(chǔ)較薄弱的同學(xué),從基礎(chǔ)開始尤為重要。 希望上面的這些同學(xué)原諒我,未經(jīng)允許就引用了他們的文章。看在大家都是同一學(xué)校的學(xué)員份上,不要向我追究版權(quán)問題。好東西應(yīng)該由大家分享?;A(chǔ)知識(shí)這么重要,那么哪些內(nèi)容屬于基礎(chǔ)知識(shí)呢? 對(duì)不起,沒有捷徑,機(jī)工版教材上講的都是基礎(chǔ)知識(shí)。我這里只能選幾個(gè)主題說一下。 集合是數(shù)學(xué)中最重要的概念,是整個(gè)數(shù)學(xué)的基礎(chǔ)。我印象中,集合的定義是:集合是具有相同性質(zhì)的元素的集體。
5、這個(gè)定義屬于循環(huán)定義,因?yàn)榧w就是集合。我的理解是:把一些互不相同的東西放在一起,就組成一個(gè)集合。唯一的要求是“互不相同”。集合中的元素可以是毫不相干的。元素可以是個(gè)體,也可以是一個(gè)集合, 比如1,2,1,2就構(gòu)成一個(gè)集合,集合中有三個(gè)元素,兩個(gè)是個(gè)體,一個(gè)是集合。元素可以是數(shù)對(duì),(x,y)是一個(gè)數(shù)對(duì),代表二維坐標(biāo)系中的一個(gè)點(diǎn)。如果集合中的元素沒有共同的特征,要完整地描述一個(gè)集合,我們被迫列出集合中的每一個(gè)元素,如一陣風(fēng),一匹馬,一頭牛;如果存在相同的特征,描述就簡(jiǎn)單多了,如所有正整數(shù)、所有英國男人、所有四川的下過馬駒的紅色的母馬,不用一一列舉。區(qū)間是特殊的集合,專門用來表示某些連續(xù)的實(shí)數(shù)的集
6、合。集合在邏輯中的應(yīng)用也十分廣泛,學(xué)好了集合,數(shù)學(xué)和邏輯都能提高,起到“兩個(gè)男人并排坐在石頭上”的作用。 集合中元素的個(gè)數(shù)是集合的重要特征。如果兩個(gè)集合的元素能有一一對(duì)應(yīng)的關(guān)系,那么這兩個(gè)集合元素的個(gè)數(shù)就是相等的。在我們平時(shí)數(shù)物品的數(shù)量時(shí),說1,2,3,4,5,一共有5個(gè),這時(shí)我們就是在把物品的集合與集合(1,2,3,4,5)建立一一對(duì)應(yīng)的關(guān)系,正是因?yàn)槲锲窋?shù)量與集合(1,2,3,4,5)的元素個(gè)數(shù)相等,所以我們才說物品共有5個(gè)。集合分為有限集合和無限集合,元素的個(gè)數(shù)一般是針對(duì)有限集合說的。對(duì)無限集合來說,有很多不同之處。比如所有的正整數(shù)與所有的正偶數(shù),后者只是前者的一個(gè)子集,但兩者存在一一對(duì)
7、應(yīng)的關(guān)系,因此元素個(gè)數(shù)“相等”。而所有整數(shù)與所有實(shí)數(shù)則不可能建立一一對(duì)應(yīng)的關(guān)系,因?yàn)樗鼈兊臒o限的級(jí)別是不同的。對(duì)兩個(gè)無限集合,我們只強(qiáng)調(diào)是否能一一對(duì)應(yīng),不說元素個(gè)數(shù)是否相等。 兩個(gè)集合有交集和并集的關(guān)系。交集是同時(shí)在兩個(gè)集合中的所有元素的集合,例如中國人交男人=中國男人,韓國俊男交韓國美女=河利秀。并集是在其中任一個(gè)集合中的所有元素的集合。因?yàn)榧现械脑夭荒苤貜?fù),所以取并集時(shí)要去掉重復(fù)了的元素,A并B的元素個(gè)數(shù)=A的元素個(gè)數(shù)+B的元素個(gè)數(shù)-A交B的元素個(gè)數(shù)。 2、函數(shù)的概念 如果集合A中的每一個(gè)元素,按照某種對(duì)應(yīng)關(guān)系,在集合B中都有唯一的對(duì)應(yīng)元素,那么這種對(duì)應(yīng)關(guān)系被稱為A到B的函數(shù)。例如Y=
8、2X,Y=X2都建立了全體實(shí)數(shù)到全體實(shí)數(shù)的函數(shù)關(guān)系,如果用f代表對(duì)應(yīng)關(guān)系,則函數(shù)表述為:f(x)=2x, f(x)=x2。 如果A中的某些元素,不能對(duì)應(yīng)B中唯一的元素,則不存在函數(shù)關(guān)系。比如所有小偷與所有失主,因?yàn)槟承┬⊥低颠^很多不同失主的東西。 函數(shù)的定義域和值域。mba數(shù)學(xué)只考慮實(shí)數(shù)。所有能使函數(shù)有意義的實(shí)數(shù)的集合,構(gòu)成函數(shù)的定義域,即上面的集合A。F(X)=X(1/2)定義域?yàn)閄/ X>=0,F(xiàn)(X)=1/X定義域?yàn)閄/ X<>=0,F(xiàn)(X)=LN(X)定義域?yàn)閄/ X>0。如果函數(shù)中同時(shí)包括幾類簡(jiǎn)單函數(shù),則定義域是各類函數(shù)定義域的交集。定義域按照對(duì)應(yīng)關(guān)系,能對(duì)應(yīng)
9、的所有實(shí)數(shù)的集合,構(gòu)成函數(shù)的值域。定義域、對(duì)應(yīng)關(guān)系、值域,三者構(gòu)成一個(gè)函數(shù)。 定義域中的每一個(gè)元素,與其在值域中對(duì)應(yīng)的元素,組成一個(gè)數(shù)對(duì),由二維坐標(biāo)系中的一個(gè)點(diǎn)來表示。所有這樣的點(diǎn)形成了函數(shù)的圖象。圖象能直觀地表現(xiàn)函數(shù)的對(duì)應(yīng)關(guān)系,大家應(yīng)該熟悉冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的基本圖象。要求高的同學(xué)可以進(jìn)一步掌握?qǐng)D象的平移、反射、旋轉(zhuǎn)。奇函數(shù)和偶函數(shù)的定義不說了,要注意的是奇函數(shù)和偶函數(shù)的定義域必須關(guān)于原點(diǎn)對(duì)稱。F(X)=X,X為任意實(shí)數(shù) 是奇函數(shù),如果限定X屬于-3,5,那函數(shù)就不是奇函數(shù)了。 反函數(shù)。如果集合A中的每一個(gè)元素,按照某種對(duì)應(yīng)關(guān)系,在集合B中都有唯一的對(duì)應(yīng)元素;而B中的每一個(gè)元素,在A
10、中都有唯一的元素與之對(duì)應(yīng)。則A到B的對(duì)應(yīng)關(guān)系是可逆的,A到B的對(duì)應(yīng)關(guān)系是原函數(shù),B到A的對(duì)應(yīng)關(guān)系是反函數(shù)。對(duì)于連續(xù)的函數(shù)來說,只有絕對(duì)增函數(shù)或絕對(duì)減函數(shù),才存在反函數(shù),否則A中必有兩個(gè)元素,在B中對(duì)應(yīng)同一元素。對(duì)于不連續(xù)的函數(shù)則沒有上述限制。復(fù)合函數(shù)。集合A中的元素,按一種函數(shù)對(duì)應(yīng)到集合B,B中的相應(yīng)元素,再按另一種函數(shù)對(duì)應(yīng)到集合C,最后形成集合A到集合C的對(duì)應(yīng)關(guān)系,稱為復(fù)合函數(shù)。 3、數(shù)列的概念 數(shù)列是一種特殊的函數(shù),其定義域?yàn)槿w或部分自然數(shù)。數(shù)列的通項(xiàng)公式A(N)就是一個(gè)函數(shù),求出通項(xiàng)公式,等于求出了數(shù)列的任一項(xiàng)。數(shù)列的前N項(xiàng)和S(N)(N=1,2,)構(gòu)成了一個(gè)新的數(shù)列,知道S(N)的公
11、式,通過A(1)=S(1),A(N)=S(N)-S(N-1)就能求出原數(shù)列的通項(xiàng)公式。 mba數(shù)學(xué)主要考察等差數(shù)列和等比數(shù)列。有些數(shù)列不是等差數(shù)列或等比數(shù)列,但經(jīng)過改造后可構(gòu)造出等差數(shù)列或等比數(shù)列,如A(1)=1,A(N+1)=2A(N)+1。這個(gè)數(shù)列的每一項(xiàng)都加上1,就成為等比數(shù)列了,通項(xiàng)公式為2N,因此原數(shù)列通項(xiàng)公式為:A(N)=2N-1 其他常見的數(shù)列包括A(N)=N3, A(N)=N!/(N-K)!,A(N)=1/N(N-1)等,都有相應(yīng)的辦法能處理。 4、極限、連續(xù)、導(dǎo)數(shù)、積分的概念 極限的概念是整個(gè)微積分的基礎(chǔ),需要深刻地理解,由極限的概念才能引出連續(xù)、導(dǎo)數(shù)、積分等概念。極限的概念
12、首先是從數(shù)列的極限引出的。對(duì)于任意小的正數(shù)E,如果存在自然數(shù)M,使所有NM時(shí),|A(N)-A|都小于E,則數(shù)列的極限為A。極限不是相等,而是無限接近。而函數(shù)的極限是指在X0的一個(gè)臨域內(nèi)(不包含X0這一點(diǎn)),如果對(duì)于任意小的正數(shù)E,都存在正數(shù)Q,使所有(X0-Q,X0+Q)內(nèi)的點(diǎn),都滿足|F(X)-A|E,則F(X)在X0點(diǎn)的極限為A。很多求極限的題目都可以用極限的定義直接求出。 例如F(X)=(X2-3X+2)/(X-2), X=2不在函數(shù)定義域內(nèi),但對(duì)于任何X不等于2,F(xiàn)(X)=X-1,因此在X無限接近2,但不等于2時(shí),F(xiàn)(X)無限接近1,因此,F(xiàn)(X)在2處的極限為1。連續(xù)的概念。如果函數(shù)
13、在X0的極限存在,函數(shù)在X0有定義,而且極限值等于函數(shù)值,則稱F(X)在X0點(diǎn)連續(xù)。以上的三個(gè)條件缺一不可。 在上例中,F(xiàn)(X)在X=2時(shí)極限存在,但在X=2這一點(diǎn)沒有定義,所以函數(shù)在X=2不連續(xù); 如果我們定義F(2)=1,補(bǔ)上“缺口”,則函數(shù)在X=2變成連續(xù)的;如果我們定義F(2)=3,雖然函數(shù)在X=2時(shí),極限值和函數(shù)值都存在,但不相等,那么函數(shù)在X=2還是不連續(xù)。 由連續(xù)又引出了左極限、右極限和左連續(xù)、右連續(xù)的概念。函數(shù)值等于左極限為左連續(xù),函數(shù)值等于右極限為右連續(xù)。如果函數(shù)在X0點(diǎn)左右極限都存在,且都等于函數(shù)值,則函數(shù)在X=X0時(shí)連續(xù)。這個(gè)定義是解決分段函數(shù)連續(xù)問題的最重要的、幾乎是唯
14、一的方法。 如果函數(shù)在某個(gè)區(qū)間內(nèi)每一點(diǎn)都連續(xù),在區(qū)間的左右端點(diǎn)分別左右連續(xù)(對(duì)閉區(qū)間而言),則稱函數(shù)在這個(gè)區(qū)間上連續(xù)。導(dǎo)數(shù)的概念。導(dǎo)數(shù)是函數(shù)的變化率,直觀地看是指切線的斜率。略有不同的是,切線可以平行于Y軸,此時(shí)斜率為無窮大,因此導(dǎo)數(shù)不存在,但切線存在。 導(dǎo)數(shù)的求法也是一個(gè)極限的求法。對(duì)于X=X0,在X0附近另找一點(diǎn)X1,求X0與X1連線的斜率。當(dāng)X1無限靠近X0,但不與X0重合時(shí),這兩點(diǎn)連線的斜率,就是F(X)在X=X0處的導(dǎo)數(shù)。關(guān)于導(dǎo)數(shù)的題目多數(shù)可用導(dǎo)數(shù)的定義直接解決。教科書中給出了所有基本函數(shù)的導(dǎo)數(shù)公式,如果自己能用導(dǎo)數(shù)的定義都推導(dǎo)一遍,理解和記憶會(huì)更深刻。其中對(duì)數(shù)的導(dǎo)數(shù)公式推導(dǎo)中用到了
15、重要極限:limx->0 (1+x)(1/x)=e。導(dǎo)數(shù)同樣分為左導(dǎo)數(shù)和右導(dǎo)數(shù)。導(dǎo)數(shù)存在的條件是:F(X)在X=X0連續(xù),左右導(dǎo)數(shù)存在且相等。這個(gè)定義是解決分段函數(shù)可導(dǎo)問題的最重要的、幾乎是唯一的方法。 如果函數(shù)在某個(gè)區(qū)間內(nèi)每一點(diǎn)都可導(dǎo),在區(qū)間的左右端點(diǎn)分別左右導(dǎo)數(shù)存在(對(duì)閉區(qū)間而言),則稱函數(shù)在這個(gè)區(qū)間上可導(dǎo)。復(fù)合函數(shù)的導(dǎo)數(shù),例如fu(x),是集合A中的自變量x,產(chǎn)生微小變化dx,引起集合B中對(duì)應(yīng)數(shù)u的微小變化du,u的變化又引起集合C中的對(duì)應(yīng)數(shù)f(u)的變化,則復(fù)合函數(shù)的導(dǎo)函數(shù)fu(x)=df(u)/dx=df(u)/du * du/dx=f(u)*u(x)導(dǎo)數(shù)在生活中的例子最常見的
16、是距離與時(shí)間的關(guān)系。物體在極其微小的時(shí)間內(nèi),移動(dòng)了極其微小的距離,二者的比值就是物體在這一刻的速度。對(duì)于自由落體運(yùn)動(dòng),下落距離S=1/2gt2,則物體在時(shí)間t0的速度為V(t0)=S(t0+a)-S(t0)/a, 當(dāng)a趨近于0時(shí)的值,等于gt0; 而速度隨時(shí)間的增加而增加,變化的比率g稱為加速度。加速度是距離對(duì)時(shí)間的二階導(dǎo)數(shù)。從直觀上看,可導(dǎo)意味著光滑的、沒有尖角,因?yàn)樵诩饨翘幾笥覍?dǎo)數(shù)不相等。有笑話說一位教授對(duì)學(xué)生抱怨道:“這飯館讓人怎么吃飯?你看這碗口,處處不可導(dǎo)!” 積分的概念。從面積上理解,積分就是積少成多,把無限個(gè)面積趨近于0的線條,累積在一起,就成為大于0的面積。我們可以把一塊圖形分
17、割為狹長的長方形(長方形的高度都取函數(shù)在左端或右端的函數(shù)值),分別計(jì)算各個(gè)長方形的面積再加總,可近似地得出圖形的面積。當(dāng)我們把長方形的寬度設(shè)定得越來越窄,計(jì)算結(jié)果就越來越精確,與圖形實(shí)際面積的差距越來越小。如果函數(shù)的積分存在,則長方形寬度趨近于0時(shí),求出的長方形面積總和的極限存在,且等于圖形的實(shí)際面積。這里又是一個(gè)極限的概念。 如果函數(shù)存在不連續(xù)的點(diǎn),但在該點(diǎn)左右極限都存在,函數(shù)仍是可積的。只要間斷點(diǎn)的個(gè)數(shù)是有限的,則它們代表的線條面積總和為0,不影響計(jì)算結(jié)果。在廣義積分中,允許函數(shù)在無限區(qū)間內(nèi)積分,或某些點(diǎn)的函數(shù)值趨向無窮大,只要積分的極限存在,函數(shù)都是可積的。 嚴(yán)格地說,我們只會(huì)計(jì)算長方形
18、的面積。從我們介紹的積分的求法看,我們實(shí)際上是把求面積化為了數(shù)列求和的問題,即求數(shù)列的前N項(xiàng)和S(N),在N趨近于無窮大時(shí)的極限。很多時(shí)候,求積分和求無限數(shù)列的和是可以相互轉(zhuǎn)換的。當(dāng)我們深刻地理解了積分的定義和熟練地掌握了積分公式之后,我們同樣可用它來解決相當(dāng)棘手的數(shù)列求和問題。 例如:求LIM Nà正無窮大時(shí),1/N*1+1/(1+1/N)+1/(1+2/N)+1/(1+(N-1)/N)+1/2的值??此茻o從下手,可當(dāng)我們把它轉(zhuǎn)化為一連串的小長方形的面積之后,不禁會(huì)恍然大悟:這不是F(X)=1/X在1,2上的積分嗎?從而輕松得出結(jié)果為ln2。除了基本的積分公式外,換元法和分步法是常
19、用的積分方法。換元積分法的實(shí)質(zhì)是把原函數(shù)化為形式簡(jiǎn)單的復(fù)合函數(shù);分步積分法的要領(lǐng)是:在udv=uv-vdu中,函數(shù)u微分后應(yīng)該變簡(jiǎn)單(比如次數(shù)降低),而函數(shù)v積分后不會(huì)變得更復(fù)雜。 5、排列、組合、概率的概念 排列、組合、概率都與集合密切相關(guān)。排列和組合都是求集合元素的個(gè)數(shù),概率是求子集元素個(gè)數(shù)與全集元素個(gè)數(shù)的比值。 以最常見的全排列為例,用S(A)表示集合A的元素個(gè)數(shù)。用1、2、3、4、5、6、7、8、9組成數(shù)字不重復(fù)的九位數(shù),則每一個(gè)九位數(shù)都是集合A的一個(gè)元素,集合A中共有9!個(gè)元素,即S(A)=9!如果集合A可以分為若干個(gè)不相交的子集,則A的元素等于各子集元素之和。把A分成各子集,可以把
20、復(fù)雜的問題化為若干簡(jiǎn)單的問題分別解決,但我們要詳細(xì)分析各子集之間是否確無公共元素,否則會(huì)重復(fù)計(jì)算。 6、集合的對(duì)應(yīng)關(guān)系 兩個(gè)集合之間存在對(duì)應(yīng)關(guān)系(以前學(xué)的函數(shù)的概念就是集合的對(duì)應(yīng)關(guān)系)。如果集合A與集合B存在一一對(duì)應(yīng)的關(guān)系,則S(A)=S(B)。如果集合B中每個(gè)元素對(duì)應(yīng)集合A中N個(gè)元素,則集合A的元素個(gè)數(shù)是B的N倍(嚴(yán)格的定義是把集合A分為若干個(gè)子集,各子集沒有共同元素,且每個(gè)子集元素個(gè)數(shù)為N,這時(shí)子集成為集合A的元素,而B的元素與A的子集有一一對(duì)應(yīng)的關(guān)系,則S(A)=S(B)*N 例如:從1、2、3、4、5、6、7、8、9中任取六個(gè)數(shù),問能組成多少個(gè)數(shù)字不重復(fù)的六位數(shù)。 集合A為數(shù)字不重復(fù)的
21、九位數(shù)的集合,S(A)=9! 集合B為數(shù)字不重復(fù)的六位數(shù)的集合。 把集合A分為子集的集合,規(guī)則為前6位數(shù)相同的元素構(gòu)成一個(gè)子集。顯然各子集沒有共同元素。每個(gè)子集元素的個(gè)數(shù),等于剩余的3個(gè)數(shù)的全排列,即3! 這時(shí)集合B的元素與A的子集存在一一對(duì)應(yīng)關(guān)系,則 S(A)=S(B)*3! S(B)=9!/3! 組合與排列的區(qū)別在于,每一個(gè)組合中的各元素是沒有順序的。無論這些元素怎樣排列,都只當(dāng)作一種組合方式。所以在計(jì)算組合數(shù)的時(shí)候,只要分步,就意味有次序。取N次,N件物品的N!種排列方式都會(huì)被當(dāng)作不同選法,該選法就重復(fù)計(jì)了N!次。比如10個(gè)球中任取三個(gè)球,取法應(yīng)該是C(10,3),但如果先從10個(gè)中取一
22、個(gè),得C(10,1),再從9個(gè)中取一個(gè)得C(9,1),再從8個(gè)中取一個(gè)得C(8,1),再相乘結(jié)果成了P(10,3),結(jié)果增大了3!倍。 概率的概念。在有限集合的情況下,概率是子集元素個(gè)數(shù)與全集元素個(gè)數(shù)的比值。在無限集合的情況下,概率是代表子集的點(diǎn)的面積與代表全集的點(diǎn)的面積的比值。 概率分布函數(shù)可以描述概率分布的全貌。離散型的概率分布是一組數(shù)列,計(jì)算事件發(fā)生的概率、數(shù)學(xué)期望和方差都使用數(shù)列的計(jì)算方法。連續(xù)型的概率分布是一個(gè)函數(shù), 它等于概率密度函數(shù)的積分,計(jì)算事件發(fā)生的概率、數(shù)學(xué)期望和方差都使用積分的計(jì)算方法。 概率的概念不難理解,解題能力決定于對(duì)數(shù)列和積分中的方法掌握的熟練程度。 7、線性代數(shù)的相關(guān)概念 向量是一組數(shù),代表從原點(diǎn)向一個(gè)點(diǎn)引出的有方向的線段。在平面上容易理解,(X,Y)代表從原點(diǎn)從點(diǎn)(X,Y)引出的線段;三維空間中的向量也好理解,伸出胳膊隨便指向一個(gè)方向,就是一個(gè)向量。超過三維的向量就只能靠想象了。 向量
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 碳中性投資趨勢(shì)-洞察分析
- 眼位穩(wěn)定性研究-洞察分析
- 無障礙設(shè)計(jì)原則研究-洞察分析
- 物業(yè)服務(wù)合同監(jiān)管策略-洞察分析
- 油氣開采業(yè)企業(yè)形象危機(jī)管理研究-洞察分析
- 溫室智能控制系統(tǒng)-洞察分析
- 2024年柳州市紅十字會(huì)醫(yī)院柳州市眼科醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點(diǎn)附帶答案
- 關(guān)于轉(zhuǎn)讓教學(xué)教具等教學(xué)資產(chǎn)的協(xié)議書(2篇)
- 2025年粵人版九年級(jí)生物上冊(cè)階段測(cè)試試卷
- 2024年05月全國渣打銀行中小企業(yè)金融部社會(huì)招考筆試歷年參考題庫附帶答案詳解
- MOOC 計(jì)量經(jīng)濟(jì)學(xué)-西南財(cái)經(jīng)大學(xué) 中國大學(xué)慕課答案
- 無人機(jī)測(cè)試與評(píng)估標(biāo)準(zhǔn)
- 2024版國開電大法學(xué)本科《國際經(jīng)濟(jì)法》歷年期末考試總題庫
- 2023-年2月山東公務(wù)員錄用考試《申論B》考試真題
- 中國人壽保險(xiǎn)培訓(xùn)
- 2024年國家電投五凌電力限公司招聘歷年高頻考題難、易錯(cuò)點(diǎn)模擬試題(共500題)附帶答案詳解
- 陪診服務(wù)培訓(xùn)課件模板
- 兒童食物過敏的流行病學(xué)調(diào)查與風(fēng)險(xiǎn)因素分析
- 云邊有個(gè)小賣部詳細(xì)介紹
- 2023南頭古城項(xiàng)目簡(jiǎn)介招商手冊(cè)
- 鄉(xiāng)鎮(zhèn)權(quán)責(zé)清單
評(píng)論
0/150
提交評(píng)論