數(shù)學(xué)建模論文-校園公交車調(diào)度問題_第1頁
數(shù)學(xué)建模論文-校園公交車調(diào)度問題_第2頁
數(shù)學(xué)建模論文-校園公交車調(diào)度問題_第3頁
數(shù)學(xué)建模論文-校園公交車調(diào)度問題_第4頁
數(shù)學(xué)建模論文-校園公交車調(diào)度問題_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、西南交通大學(xué)2012年新秀杯數(shù)學(xué)建模競賽題目: A題 組別: 大二組 參賽隊(duì)員1參賽隊(duì)員2參賽隊(duì)員3姓名學(xué)號(hào)學(xué)院專業(yè)電話Email西南交通大學(xué)教務(wù)處西南交通大學(xué)實(shí)驗(yàn)室及設(shè)備管理處西南交通大學(xué)數(shù)學(xué)建模創(chuàng)新實(shí)踐基地21校園通行車路線的設(shè)計(jì)摘 要本文主要研究的是校園交通車的站點(diǎn)設(shè)置、在固定停車和招手即停兩種模式結(jié)合下的運(yùn)載能力、運(yùn)行路線和時(shí)間安排以及相應(yīng)行駛方案的規(guī)劃問題。問題一中,我們對校園通行車現(xiàn)有行車路線網(wǎng)絡(luò)和常停站點(diǎn)進(jìn)行了調(diào)查和分析。首先,在數(shù)據(jù)處理階段,將站點(diǎn)實(shí)體間的線路選擇抽象為圖論最短路模型,用Matlab軟件畫出三條主要的行車線路,然后利用GIS空間分析方法解決單個(gè)交通線路上站點(diǎn)規(guī)劃

2、問題。該方法依據(jù)乘客出行時(shí)間最短確定單個(gè)線路上的站點(diǎn)個(gè)數(shù),結(jié)合GIS緩沖區(qū)分析和疊合分析,在路線上做站點(diǎn)設(shè)置的適宜性討論,提出基于最優(yōu)化理論和GIS空間分析技術(shù)的站點(diǎn)規(guī)劃方法,確定站點(diǎn)的位置,從而提供一種可行的行駛方案。問題二中,考慮固定停車和招手即停相結(jié)合的方案,我們首先將最佳行駛路線定義為車輛運(yùn)行時(shí)間最短的路線,將圖論中經(jīng)典的Dijkstra算法(單源最短路徑)進(jìn)行改進(jìn),結(jié)合哈密爾頓圖,以結(jié)點(diǎn)之間的時(shí)間作為權(quán)數(shù),利用C+編程得到最佳推銷員回路,也就是通行車行駛的最佳路徑??紤]到招手即停模式具有極大的隨機(jī)性,為了便于調(diào)度,我們首先對乘車人次密度分布進(jìn)行了調(diào)查和分析,并通過隨機(jī)模擬出概率分布值

3、較大的區(qū)域,將其抽象為一假想固定停車點(diǎn),這樣就將模型簡化為固定停車點(diǎn)最佳行駛路徑的問題。根據(jù)已得到的乘車時(shí)段分布規(guī)律和學(xué)校實(shí)際的作息時(shí)間表,按照模糊聚類分析法將一工作日數(shù)單位時(shí)間段劃分為更概括的高峰期、低潮期和一般期,并應(yīng)用Matlab中的fgoalattain進(jìn)行非線性規(guī)劃求出實(shí)際發(fā)車數(shù),以及應(yīng)用時(shí)間步長法估計(jì)發(fā)車間隔,從而給出兩種模式結(jié)合下通行車每周運(yùn)行的車輛數(shù)、路線和時(shí)刻表。問題三中,我們首先對校區(qū)師生乘車需求人數(shù)進(jìn)行了描述性統(tǒng)計(jì),從乘車人數(shù)的均值、方差、峰度以及正態(tài)性四個(gè)角度對樣本進(jìn)行檢測,找到相關(guān)的分布規(guī)律與結(jié)論,即每日在各時(shí)段中的乘車人數(shù)分布相似。隨后,我們以ANOVA方差檢驗(yàn)、組

4、內(nèi)與組間均值比較以及標(biāo)準(zhǔn)誤差分析為手段,進(jìn)一步驗(yàn)證了所得結(jié)論的準(zhǔn)確性。并且以此建立較為理想化的整數(shù)規(guī)劃模型,將全局約束以發(fā)車時(shí)間劃分為幾個(gè)高峰時(shí)段,用Lingo軟件在個(gè)高峰時(shí)段約束中全局最優(yōu)解,從而得到在已知行駛方案下校園通行車的運(yùn)載能力。本文建立的行駛方案模型能與實(shí)際緊密聯(lián)系,結(jié)合校園實(shí)際情況對問題進(jìn)行求解,并在模型擴(kuò)展中利用計(jì)算機(jī)編程和仿真軟件對所得結(jié)果和調(diào)度方案進(jìn)行分析和評價(jià),使得模型具有很好的通用性和推廣性。關(guān)鍵字:站點(diǎn)選址 最優(yōu)化原理 GIS 模糊聚類 非線性規(guī)劃 圖論1 問題重述西南交通大學(xué)犀浦校區(qū)位于成都市西北郫縣犀浦鎮(zhèn),緊靠成都市外環(huán)線500米生態(tài)帶,距市中心約12公里,校園占

5、地約3000畝。犀浦校區(qū)的規(guī)劃和建設(shè)都強(qiáng)調(diào)和突出“自然、人文”的先進(jìn)理念,按照“一軸二帶三環(huán)六區(qū)”的規(guī)劃骨架,由南至北,逐步展開的。從2004年第一批學(xué)生入住以來,犀浦校區(qū)的規(guī)模日漸擴(kuò)大并趨于成熟。但是由于校區(qū)面積過大,出現(xiàn)了師生出行難,上課、回寢室、出校等所花時(shí)間較多等問題。為解決這一問題,校園內(nèi)出現(xiàn)了便捷通行車,師生只用花費(fèi)一元錢就可以在校內(nèi)往返。 目前,這種通行車采取招手即停的方式,校園內(nèi)的任意地點(diǎn)都基本可以到達(dá),但是當(dāng)規(guī)模進(jìn)一步擴(kuò)大,管理更加規(guī)范后,可能需要考慮固定班次和行車路線。 題圖2給出了交大犀浦校區(qū)的平面地圖,利用數(shù)學(xué)模型研究以下問題:1、請?jiān)谛@內(nèi)設(shè)置一些固定停車點(diǎn),并說明其

6、合理性;2、將固定停車和招手即停兩種模式結(jié)合起來,給出每周通行車從上午7點(diǎn)到晚上10點(diǎn)的運(yùn)行車輛數(shù)、運(yùn)行路線及時(shí)刻表;3、預(yù)測校園通行車在您安排的行駛方案下的運(yùn)載能力。2 問題分析問題一:影響固定停車點(diǎn)分布的主要因素有通行車的數(shù)量、乘客人數(shù)分布與到站規(guī)律、交通流量及線路上的其他隨機(jī)因素對車輛運(yùn)行的干擾。一般來說,站點(diǎn)安排應(yīng)考慮到以下兩點(diǎn):1) 使乘客的出行總時(shí)間降到最低2) 固定停車點(diǎn)附近的所有乘客到達(dá)站點(diǎn)的總路程最短本節(jié)就此問題僅對最短通行時(shí)間路徑進(jìn)行討論,即在所用時(shí)間最短的前提下,求解所經(jīng)過的道路點(diǎn)。問題二:考慮固定停車和招手即停兩種模式結(jié)合,該情況的影響因子很多,且各因素都是隨機(jī)的。因此

7、,必須對模型做一定的簡化。首先,我們搜集了北區(qū)第一講課之前乘車高峰時(shí)間段及乘車人數(shù)的統(tǒng)計(jì)數(shù)據(jù)并進(jìn)行了描述性統(tǒng)計(jì),由對樣本的分析結(jié)果找到相關(guān)的人流密度分布規(guī)律,且通過模糊聚類分析對時(shí)間段進(jìn)行劃分,假設(shè)每日各時(shí)段的乘車人數(shù)分布相似。隨后,通過檢驗(yàn)與誤差分析進(jìn)一步驗(yàn)證所得結(jié)論的準(zhǔn)確性,為以后的分析和建模做好準(zhǔn)備。之后,結(jié)合圖論中的Dijkstra算法和哈密爾頓圈問題分析,得出適合該問題求解的最佳路徑模型,根據(jù)已得到的乘車時(shí)段分布規(guī)律和學(xué)校實(shí)際的作息時(shí)間表,應(yīng)用Matlab進(jìn)行多目標(biāo)規(guī)劃并結(jié)合時(shí)間步長法估計(jì)發(fā)車間隔和發(fā)車數(shù),從而給出兩種模式結(jié)合下通行車每周運(yùn)行的車輛數(shù)、路線和運(yùn)行時(shí)刻表。問題三:根據(jù)問

8、題一、二得出的行駛方案,利用計(jì)算機(jī)仿真對模型進(jìn)行模擬和檢驗(yàn)。根據(jù)已有數(shù)據(jù)建立多目標(biāo)規(guī)劃模型,考慮時(shí)間、車輛數(shù)、路線等對目標(biāo)函數(shù)的約束,分析影響通行車運(yùn)載能力的因素,求出全局最優(yōu)解,并對所得結(jié)論進(jìn)行實(shí)際合理性分析和驗(yàn)證。3 模型假設(shè)(1) 通行車在行駛過程中以的速度勻速運(yùn)行,在停車點(diǎn)前后各m內(nèi)為加減速距離,平均車速為一般車速的一半;不考慮每一站停車延遲及其他因素的影響(2) 考慮各站上下車以“先下后上”方式,每位乘客上下車時(shí)間都相等(3) 通行車的運(yùn)行時(shí)間只包括乘客上下車時(shí)間和必要的運(yùn)行時(shí)間,不考慮其他時(shí)間(4) 乘客候車時(shí)間一般不超過10分鐘,早高峰時(shí)一般不超過5分鐘(5) 如果候車人數(shù)多于座

9、位數(shù),假設(shè)等待的乘客不離開(6) 通行車運(yùn)行過程中處于良好狀態(tài),即不出現(xiàn)中途因電量不足或其他故障臨時(shí)停車或換乘情況(7) 通行車按時(shí)刻表順次發(fā)車,在同一時(shí)間段內(nèi)相鄰兩輛車發(fā)車時(shí)間間隔相同,且準(zhǔn)時(shí)到達(dá)每個(gè)站點(diǎn)(8) 通行車在每個(gè)固定站點(diǎn)停留時(shí)間均為4 符號(hào)說明:通行車運(yùn)行過程中行駛速度:最短時(shí)間下從固定停車點(diǎn)到固定停車點(diǎn)之間的距離:表示從頂點(diǎn)到的經(jīng)過一條路所用時(shí)間的權(quán):表示最佳的路線,的父親點(diǎn):第時(shí)間點(diǎn)需要乘車的人數(shù)(=1,2,k):控制參數(shù):某時(shí)段運(yùn)載能力其中為通行車單程總運(yùn)行距離5 校園通行車固定停車點(diǎn)選擇模型(問題一)由于校園交通車行車網(wǎng)絡(luò)受到道路狀況、交通流量、道路長度、人流分布等多種因

10、素的制約,但考慮諸多因素建立起來的模型必然很復(fù)雜且難以求解。我們經(jīng)分析取舍,考慮主要的影響因子,建立了一個(gè)用于解決固定停車點(diǎn)規(guī)劃問題的方法。該方法主要基于最優(yōu)化理論和GIS適宜性分析技術(shù),首先通過建立一個(gè)優(yōu)化的數(shù)學(xué)模型確定固定停車點(diǎn)的總數(shù)目,同時(shí)同這個(gè)數(shù)學(xué)模型得到各影響因子和站點(diǎn)個(gè)數(shù)之間關(guān)系的函數(shù)表達(dá)式,該表達(dá)式說明在什么地方適宜建固定停車點(diǎn),從而為GIS適應(yīng)性分析提供依據(jù)。停車點(diǎn)數(shù)目確定后,在確定站點(diǎn)的空間布局。該方法采用了GIS適宜性分析技術(shù),對人流分布、交通流量、道路狀況等因素進(jìn)行量化,通過疊合分析和緩沖區(qū)分析,找到最適宜的地方建立站點(diǎn),用GIS的方法彌補(bǔ)了確定站點(diǎn)數(shù)目的優(yōu)化數(shù)學(xué)模型的引

11、入因素少的不足,使建立GIS輔助規(guī)劃系統(tǒng)成為現(xiàn)實(shí)。5.1 固定停車點(diǎn)選址的優(yōu)化模型5.1.1 影響固定停車點(diǎn)選址的相關(guān)因素模型中選址問題的影響因子有人流分布、交通流量、交通起訖點(diǎn)、一般車速、道路狀況等,我們主要考慮以下四點(diǎn):1) 兩相鄰?fù)\圏c(diǎn)間的距離;2) 人流分布。根據(jù)實(shí)際情況,固定停車點(diǎn)應(yīng)設(shè)置在人流密度相對較大的地方;3) 道路狀況。考慮交叉口和不同路段寬度、車道數(shù)對設(shè)站的影響:停車點(diǎn)越靠近交叉口對乘客越方便,但考慮安全和交通流暢,一般應(yīng)離開交叉口3050米。為減少通行車行駛對學(xué)生步行以及騎自行車的影響,道路路段寬度大的地點(diǎn)比寬度窄的地點(diǎn)更適宜設(shè)置固定停車點(diǎn);4) 交通流量。路段上公交流量

12、的分布狀況是通行車停車點(diǎn)選址的重要依據(jù)。通行車的停駛會(huì)給其他學(xué)生帶來一定的干擾,因此,若路段交通狀況原本就比較擁擠,則不宜設(shè)置停車點(diǎn)。5.1.2 通行車行駛線路規(guī)劃設(shè)置固定停車點(diǎn)的原則為方便乘客和節(jié)省乘客出行時(shí)間。首先,我們根據(jù)校園車現(xiàn)今大體行駛路線,用Matlab軟件畫出假設(shè)的三條主要行車路線(如圖5-1),該路線覆蓋了學(xué)校已建成大部分地區(qū)的主干道。圖5-1其中,:南門南區(qū)體育場一食堂西二門北區(qū)體育場15號(hào)天佑齋:南門虹橋X橋體育館15號(hào)天佑齋北區(qū)校車站:南門南區(qū)校車站一教二教圖書館八教北區(qū)校車站15號(hào)天佑齋5.1.2.1 最佳站距公式利用乘客步行到站與離站時(shí)間、乘車時(shí)間之和最短的原理,得到

13、最佳站距公式為:式中,為站距; 為乘客到停車點(diǎn)的平均速度; 為乘客距離固定乘車點(diǎn)的平均距離;為站點(diǎn)??繒r(shí)間。求出最佳停車點(diǎn)站距后,在具體設(shè)置站點(diǎn)時(shí),還應(yīng)根據(jù)沿線用地性質(zhì)進(jìn)行合理布置。5.1.2.2 基于最優(yōu)理論的通行車優(yōu)化模型實(shí)際情況表明,當(dāng)停車點(diǎn)很多時(shí),每位乘客在線路上的行程會(huì)因?yàn)橹型就\嚧螖?shù)較多而導(dǎo)致總出行時(shí)間增大;而當(dāng)停車點(diǎn)很少時(shí),乘客平均到最近一個(gè)停車點(diǎn)的時(shí)間會(huì)加長,可能超過在路上形成部分所節(jié)省的時(shí)間,從而導(dǎo)致總出行時(shí)間還是很大??梢?,當(dāng)停車點(diǎn)間距很小或很大時(shí),總出行時(shí)間都會(huì)較大,而在此間存在著某個(gè)最優(yōu)站點(diǎn)數(shù)目,使總的行程時(shí)間最小。總行程時(shí)間最小的通行車優(yōu)化模型為 (1)式中:為總出行

14、時(shí)間;為停車點(diǎn)的個(gè)數(shù);為公交車輛在公交站點(diǎn)停留的時(shí)間;為乘客到最近停車點(diǎn)的平均距離;為乘客到停車點(diǎn)的平均速度; 為通行車路線的總里程數(shù);為一般車速運(yùn)行的公里數(shù),這樣為在站點(diǎn)總的停靠時(shí)間;為在站點(diǎn)前后加減速的運(yùn)行時(shí)間;是以速度運(yùn)行的時(shí)間。在式(1)中,除了與站點(diǎn)距離有關(guān),和屬于因變量外,都可做自變量,對于特定的值,可以得出一個(gè)最佳的值來。以(經(jīng)驗(yàn)值),代入式(1)的第一個(gè)式子得令得 (2)式(2)即為最優(yōu)停車點(diǎn)數(shù)的公式根據(jù)式(2),在其他變量一定的情況下,人流越密集,那么??繒r(shí)間越大,則站點(diǎn)應(yīng)建的越少;同樣,人們到達(dá)停車點(diǎn)的速度越小,站點(diǎn)應(yīng)建的越多;公交車輛在路上可達(dá)到的加速度越大,則越小,停車

15、點(diǎn)應(yīng)建的越多。這些都是進(jìn)行GIS適宜性分析的依據(jù)。5.1.3 基于GIS適宜性分析的停車點(diǎn)選址當(dāng)站點(diǎn)數(shù)目確定后,利用GIS空間適宜性分析技術(shù)實(shí)現(xiàn)站點(diǎn)的空間定位,主要步驟為1、對人流分布,交通流量,道路狀況進(jìn)行量化。量化過程中采用下面的規(guī)則:1道路上的人流分布采用以10m的步長逐點(diǎn)做100m范圍緩沖區(qū)的方法,在緩沖區(qū)內(nèi)的人數(shù)就是對應(yīng)道路上的人流分布值(或者采用克里金插值生成人流密度表面,一般口越密集,站點(diǎn)應(yīng)建的越少;反之人口過于稀少,也不應(yīng)設(shè)置過多站點(diǎn));2交通流量以實(shí)地采集的日平均數(shù)據(jù)為準(zhǔn);3校園中道路狀況大體相當(dāng),可看作相同忽略不計(jì)說明:為了便于說明模型的思路,以下的圖表都是示意性的,實(shí)際系

16、統(tǒng)中將量化成灰度圖,以下是經(jīng)量化獲得的各影響因子的值。表1 線路人口分布、交通流量度量指標(biāo)南門南體育場一食堂三食堂北體育場四食堂15天佑齋人流分布3455445交通流量4533321Q7988766表2 線路人口分布、交通流量度量指標(biāo)南門玻璃橋虹橋X橋北區(qū)體育館15天佑齋人流分布244622交通流量543332Q787954表3 線路人口分布、交通流量度量指標(biāo)南門一教二教圖書館八教北區(qū)校車站15天佑齋人流分布2445432交通流量4113322Q6558754注:表中人流分布按照很稀疏、稀疏、一般稀疏、中等、一般密集、密集、很密集分別對應(yīng)量化值2、3、4、5、4、3、2;交通流量從量很小過渡到

17、很多分別對應(yīng)60的量化值;道路狀況取較好狀態(tài)度量值5.2、按照上面的規(guī)則生成對交通路徑的交通流量、人流分布的灰度圖,結(jié)果分別如圖1、2,再對兩個(gè)圖層進(jìn)行疊合分析,對量化指標(biāo)柵格化得到柵格圖(圖略) 圖1 交通流量圖 圖2 人流分布圖 圖3 在疊加結(jié)果上做緩沖區(qū)3、根據(jù)固定停車點(diǎn)數(shù),在交通路徑上等間距取個(gè)點(diǎn)。對每個(gè)點(diǎn)在步驟2、得到的柵格圖上做半徑為10m的點(diǎn)緩沖區(qū)(圖3)4、在緩沖區(qū)內(nèi)交通流量、人流分布量化值最大的位置設(shè)置固定停車點(diǎn)5.1.4 固定停車點(diǎn)選擇方案以起點(diǎn)南門處為中心,沿前行方向分別以200m和500m繪制圓弧,形成環(huán)形緩沖區(qū),選取緩沖區(qū)內(nèi)量化值最大的點(diǎn)作下一個(gè)站點(diǎn);若緩沖區(qū)內(nèi)出現(xiàn)最

18、大量化值相等的點(diǎn),那么就取距離上一個(gè)點(diǎn)為300m的點(diǎn)為站點(diǎn);再以尋找到的站點(diǎn)為新的起點(diǎn),重復(fù)上述步驟,直到線路終點(diǎn),如圖5-2為設(shè)計(jì)總圖圖5-25.3 模型的評價(jià)由圖可以觀察到,利用該方法設(shè)計(jì)的校園通行車固定停車點(diǎn)個(gè)數(shù)為11個(gè),這些站點(diǎn)在道路交叉口附近和人流密集的教學(xué)區(qū)、住宿區(qū)都有分布,非常方便學(xué)生上下課以及出入校園的情況。而且比較現(xiàn)有的通行情況,固定線路和停車點(diǎn)減少了乘客總的出行時(shí)間,提高了運(yùn)載效率。因此,利用該方法進(jìn)行選址是比較合理的。當(dāng)然,為了模型方便求解,我們對于交通流量、道路狀況、人流分布等因素的相關(guān)關(guān)系,以及它們在站點(diǎn)選擇時(shí)所占的權(quán)重并沒有多加考慮。另外,如果考慮到學(xué)校未來的規(guī)劃(

19、如圖5-3),則需增加一條線路圖5-3:南門七教一五教?hào)|門行政大樓北區(qū)校車站研究生小高樓教師公寓給出其量化指標(biāo)分布表:南門七教五教?hào)|門北區(qū)校車站教師公寓人流分布244622交通流量543332Q787954該線路可方便教師出行及上下課的情況。6 將固定停車和招手即停相結(jié)合的通行車行駛方案模型(問題二)結(jié)合問題一我們可定義通行車最佳行駛路線為:在所用時(shí)間最短的前提下所經(jīng)過的道路點(diǎn)。為了求出最短時(shí)間下的優(yōu)化路徑從而給出合理的行車路線的方案,我們采用了圖論中最佳推銷員回路以及Dijkstra算法建立相關(guān)模型。6.1 招手即停模式的概率抽象模型對于學(xué)生來說,每天乘車的人數(shù)為隨機(jī)變量,因此為了探討交通車

20、運(yùn)行數(shù)據(jù)的規(guī)律,首先要對每天乘坐校車的學(xué)生的人數(shù)的分布情況進(jìn)行統(tǒng)計(jì)分析。我們實(shí)地調(diào)查了一周每天早晨北區(qū)宿舍樓附近的候車情況,高峰期大致出現(xiàn)在7:458:00之間(如圖6-1所示)圖6-1對總體學(xué)生乘車人數(shù)的樣本總體進(jìn)行描述性分析,得到下表(表6-1):表6-1:描述性統(tǒng)計(jì)量總乘車人數(shù)均值標(biāo)準(zhǔn)差極小值極大值為了更直觀的了解分布情況,畫出如下散點(diǎn)圖(圖1):6.2 最佳行駛路線模型的建立如圖6-3為問題一中確定的固定停車點(diǎn)的抽象線圖,編號(hào)分別表示各站點(diǎn),兩點(diǎn)間連線表示可通行。圖 6-36.2.1最佳推銷員回路問題的哈密爾頓圖首先考慮運(yùn)行線路為環(huán)線的情況。在加權(quán)圖中,給出最佳H圖定義:1.權(quán)最小的哈

21、密爾頓圖成為最佳H圖2.經(jīng)過每個(gè)頂點(diǎn)至少一次且權(quán)最小的閉通路成為最佳銷售回路由定義可知,本題可以轉(zhuǎn)化為最佳推銷員回路問題。有給定的構(gòu)造一個(gè)以為頂點(diǎn)集的完備圖,中的每條邊的權(quán)等于頂點(diǎn)X與Y在圖G中最短路徑的權(quán),即根據(jù)哈密爾頓回路,由C+語言編寫程序和相應(yīng)解釋見附件(附錄二)。下面給出程序運(yùn)行結(jié)果:以該方法可給出37種不同的行車路線,其中最短路徑為:19108761154321,總行駛里程6.2.2 根據(jù)Dijstra算法的最佳路徑根據(jù)所學(xué)圖論知識(shí),我們將圖采用鄰接矩陣的形式描述,表示在最短時(shí)間下從道路點(diǎn)到道路點(diǎn)之間的距離,如果沒有直接連通,則為無窮大,計(jì)算機(jī)可以用一個(gè)很大的數(shù)據(jù)代替(如matla

22、b中的inf)。由于Dijkstra算法只能求從結(jié)點(diǎn)到其他各結(jié)點(diǎn)的最短路徑,對每個(gè)頂點(diǎn),定義兩個(gè)標(biāo)記(,),其中:表從頂點(diǎn)到的經(jīng)過一條路所用時(shí)間的權(quán)。表示的父親點(diǎn),用以確定最佳的路線。算法的過程就是在每一步改進(jìn)這兩個(gè)標(biāo)記,使最終為從頂點(diǎn)到的最時(shí)間的權(quán)。輸入 的帶權(quán)鄰接矩陣。算法步驟:1)賦初值:令 , 令=,= 2)更新、:,若>則令=,=3)設(shè)是使取最小值的中的頂點(diǎn),則令S=S,4)若,轉(zhuǎn)步驟2,否則停止用上述算法求出的就是到的最短時(shí)間的權(quán),從的父親標(biāo)記追溯到, 就得到到的最佳路線(程序用C語言編寫,具體代碼見附錄一,源程序見附件)程序運(yùn)行結(jié)果如下:給定問題一求解出的11個(gè)固定停車點(diǎn)之

23、間的連通關(guān)系,根據(jù)算法和已知相鄰的點(diǎn)的距離,選擇具有11個(gè)節(jié)點(diǎn)的有向圖6-2,我們可以得到其各邊權(quán)重及拓?fù)浣Y(jié)構(gòu)。 圖6-4上述程序選取了節(jié)點(diǎn)7為目的節(jié)點(diǎn),程序中采用鄰接矩陣表示一個(gè)有向圖,輸入為該圖的鄰接矩陣以及目的節(jié)點(diǎn),輸出為圖中各點(diǎn)的鄰接關(guān)系,依照次鄰接關(guān)系可得到到達(dá)目的節(jié)點(diǎn)的最短路徑。如從節(jié)點(diǎn)2到達(dá)節(jié)點(diǎn)7,需順次經(jīng)過第3點(diǎn)、第4點(diǎn)和第5點(diǎn),最優(yōu)路徑為23457,路程總長度為1482m.該方法可以求出最短路徑以及所對應(yīng)的路程,在車速假設(shè)一定的前提下,所對應(yīng)的行車時(shí)間最短,也就是說減少了乘客的總出行時(shí)間,提高了運(yùn)行效率。6.3 非線性規(guī)劃分析法求解通行車線路安排及時(shí)刻表首先通過數(shù)據(jù)的分析,考

24、慮到方案的可操作性,根據(jù)學(xué)校實(shí)際的作息時(shí)間表,我們對時(shí)間段按照模糊聚類分析法劃分為不同時(shí)間段高峰期、低潮期和一般期。引入乘客利益6.3.1 符號(hào)約定:某一時(shí)段發(fā)車次數(shù)(注:由于數(shù)據(jù)給定為平均客流量只需考慮在一個(gè)完整的周期內(nèi)的車次,即從始發(fā)站到終點(diǎn)站的這段時(shí)間):該時(shí)段的平均滿載率(一般情況下,車輛滿載率不應(yīng)超過100%,也不要低于50%):一輛通行車走完全程的時(shí)間:第站上車平均客流量:供求匹配比:控制參數(shù):某時(shí)段運(yùn)客能力6.3.2 發(fā)車次數(shù)的確定依據(jù)前面的分析,兼顧乘客出行時(shí)間與線路利用效率最大化,對6.2中求解出的最佳路線建立如下的多目標(biāo)規(guī)劃模型:目標(biāo)函數(shù)1: 供求的最優(yōu)匹配 各時(shí)段的發(fā)車車

25、次均最小 約束條件:各時(shí)段的平均滿載率限制 供求匹配比限制目標(biāo)函數(shù)使某一時(shí)段的運(yùn)客能力 與運(yùn)輸需求(實(shí)際客運(yùn)量)達(dá)到最優(yōu)匹配,反映滿載率高低的影響;目標(biāo)函數(shù)使所需的最大發(fā)車次,在滿足約束條件下盡可能少,以使總車輛數(shù)較少。約束條件是限制滿載率滿足運(yùn)營調(diào)度要求,條件是限制供求匹配比;為使始發(fā)站車場每天起始時(shí)刻的車輛數(shù)保持不變,需使總發(fā)車次數(shù)與總收車次數(shù)相等,即必須使單程車次總數(shù)達(dá)到匹配() ,而受滿載率限制,不能減少,因此用二次規(guī)劃可求得各時(shí)段發(fā)車次數(shù)目標(biāo)函數(shù)2: 約束條件:滿足每一個(gè)時(shí)刻點(diǎn)的乘車人數(shù)即可,即 6.3.3 發(fā)車數(shù)量及發(fā)車間隔的確定對于這個(gè)問題,我們采用上時(shí)間步長法,根據(jù)假設(shè)一個(gè)時(shí)段

26、內(nèi)發(fā)車間隔時(shí)間相等,則可由確定,從而得到發(fā)車時(shí)刻表。按此發(fā)車時(shí)刻表模擬實(shí)際運(yùn)行過程,目標(biāo)是確定能滿足時(shí)刻表的最小車輛數(shù),統(tǒng)計(jì)各項(xiàng)運(yùn)營指標(biāo),搜索最優(yōu)調(diào)度方案解。6.3.3.1 模擬子程序一:確定最小車輛數(shù)根據(jù)“按流發(fā)車”和“先進(jìn)先出”的原則,對起點(diǎn)站,在發(fā)車時(shí)刻應(yīng)至少有一輛車可以發(fā)出(處于等待發(fā)車狀態(tài))。若有多輛車,則先進(jìn)站者先發(fā)車,其余車輛“排隊(duì)”等候;若無車可發(fā),則出現(xiàn)“間斷”。完整的運(yùn)營過程應(yīng)保證車輛嚴(yán)格按時(shí)刻表發(fā)車,不發(fā)生間斷。設(shè)圖6-3中的站點(diǎn)5有車場A,從車場中不斷有車發(fā)出,同時(shí)接受車進(jìn)場,則車場中的車的數(shù)目是隨時(shí)間變化的狀態(tài)量。用來描述車場A中要滿足車流不間斷所需的最小數(shù)目,分別搜

27、索其在運(yùn)行過程中的最大值,則所需最小車量數(shù)目6.3.3.2 模擬子程序二:統(tǒng)計(jì)各項(xiàng)運(yùn)營指標(biāo)確定各項(xiàng)運(yùn)營指標(biāo)采用模擬統(tǒng)計(jì)的計(jì)算方法,對不同的運(yùn)營指標(biāo)進(jìn)行定量計(jì)算,主要功能是通過定量分析運(yùn)營指標(biāo)來檢驗(yàn)方案的可行性,以確定方案調(diào)整。由于車次與發(fā)車時(shí)刻一一對應(yīng),而車輛的隊(duì)列順序不發(fā)生改變,因而對所需車輛進(jìn)行統(tǒng)一編號(hào),則對每一車次,與其對應(yīng)的車輛編號(hào)是確定的,故我們直接對第次車進(jìn)行考察。統(tǒng)計(jì)的指標(biāo)及其定義如下:平均滿載率 平均候車時(shí)間 符號(hào)說明::第次車到第站時(shí)上車與下車的人數(shù)之差:第次車離開第站時(shí)站臺(tái)上的滯留人數(shù):第次車離開第站時(shí)車上的人數(shù); 為第次車離開第站時(shí)站臺(tái)上滯留者的滯留時(shí)間:第次車離開第站時(shí)

28、的滿載率:一天單程所發(fā)的車次總數(shù):單程站臺(tái)總數(shù)6.3.3.3 模擬結(jié)果及統(tǒng)計(jì)指標(biāo)分析通過谷歌地圖測出校園通行車全程長度為L=4830m,車平均速度為,假設(shè)站點(diǎn)間的距離6.3.4 其他模型及求解設(shè)決策變量:每個(gè)發(fā)車點(diǎn)的調(diào)運(yùn)車輛為目標(biāo)函數(shù):設(shè)總運(yùn)營成本為當(dāng)為奇數(shù)時(shí),車輛要空跑一個(gè)單程,以滿總的乘車需求。約束條件:使調(diào)運(yùn)的車數(shù)可以滿足全部需要乘車的人數(shù),設(shè)為,即若車在時(shí)間不發(fā)車,則。綜上所述:可建立如下模型:6.3.5調(diào)度方案6.4 模型的評價(jià)7 校園車運(yùn)載能力預(yù)測模型(問題三)交通系統(tǒng)的運(yùn)載能力一般可定義為:某股道上,某一方向一小時(shí)內(nèi)所能運(yùn)載的總旅客數(shù),運(yùn)載能力是交通系統(tǒng)中最重要的參數(shù)。一般情況下

29、,運(yùn)載能力區(qū)分為:通過能力。在一定運(yùn)輸線路、方向和區(qū)段上,在一定運(yùn)輸組織方法條件下,運(yùn)輸固定設(shè)備所擁有的能力;輸送能力。在運(yùn)輸線路、方向和區(qū)段上,在配備一定職工條件下,運(yùn)輸活動(dòng)工具所具有的能力通過能力和輸送能力均以單位時(shí)間內(nèi)(通常是一晝夜或一年)所能通過的列車數(shù)、汽車數(shù)、船舶數(shù)或運(yùn)輸量來計(jì)量。一般公路校園車運(yùn)載能力分為:基本通行能力、可能通行能力和實(shí)際通行能力。其中,實(shí)際通行能力是單位時(shí)間內(nèi)公路上能實(shí)際順利通過的最大車輛數(shù),需要考慮車道寬度、側(cè)向凈空、行車視距和氣候條件等因素加以折減?;就ㄐ心芰Φ挠?jì)算公式為8 模型的評價(jià)與改進(jìn)8.1模型的評價(jià)我們通過一些合理的假設(shè) ,針對校園通行車輛調(diào)度問題

30、建立了一般模型。先對模型進(jìn)行了合理的簡化,采用由簡單到復(fù)雜逐步深入的方法,建立了針對車輛調(diào)度問題的一般規(guī)劃模型,然后充分利用C+、SPSS、Matlab與Lingo等軟件,并應(yīng)用Dijstra算法和深度優(yōu)先算法進(jìn)行求解與優(yōu)化,從而得到一個(gè)整體最優(yōu)解以及最佳車輛調(diào)配方案。通過對通行車路徑優(yōu)化問題進(jìn)行研究分析,可以得到較合理的校車路徑,一方面可以減少學(xué)校投入通行車數(shù)量,節(jié)約成本;另一方面可以縮短學(xué)生等待時(shí)間和校車總行駛時(shí)間,提高運(yùn)載能力和服務(wù)質(zhì)量;除此之外,對于校園通行車路徑優(yōu)化問題的研究能為其他企業(yè)職工通勤車、公交車調(diào)度、物流企業(yè)車輛線路優(yōu)化等提供相關(guān)的理論指導(dǎo)和方法,起到一定的推廣與借鑒作用。

31、8.2模型的改進(jìn)(l)從模型構(gòu)造角度來看,本文雖然嘗試性的進(jìn)行了數(shù)學(xué)規(guī)劃模型的構(gòu)建,但是只考慮了在一定假設(shè)條件下的站點(diǎn)選擇和路徑安排問題。由于實(shí)際情況中,通行車的發(fā)車時(shí)間是關(guān)于期望準(zhǔn)點(diǎn)發(fā)車的正態(tài)分布,對應(yīng)的時(shí)點(diǎn)概率為;在各個(gè)時(shí)間點(diǎn)上來乘車的人數(shù)也是隨機(jī)的,經(jīng)過重新數(shù)據(jù)搜集,并運(yùn)用聚類分析等統(tǒng)計(jì)工具,可將人數(shù)的分布分為,所以,第個(gè)時(shí)間點(diǎn)可載人數(shù)進(jìn)而目標(biāo)函數(shù)可修正為:實(shí)際問題可能會(huì)涉及到更多的隨機(jī)因素,如時(shí)間窗的引入,以及學(xué)生、車輛、路況等不確定信息的考慮,這些問題將有待于今后進(jìn)一步研究。(2)在設(shè)計(jì)車輛調(diào)度方案時(shí) ,并未充分考慮學(xué)生的乘車需求,在進(jìn)行模型改進(jìn)時(shí),可以試著想其它辦法找到一些更好的規(guī)

32、則來進(jìn)行對比與評價(jià),從而得到更加優(yōu)化的方案,使各方利益達(dá)到充分均衡,這也是模型改進(jìn)的方向。參考文獻(xiàn)1姜啟源,謝金星,葉俊,數(shù)學(xué)模型(第三版)M,北京:清華大學(xué)出版社,2010.2黃杏元,馬勁松,湯勤等,地理信息系統(tǒng),北京:高等教育出版社,2002.3周義倉,赫孝良,數(shù)學(xué)建模實(shí)驗(yàn)M,西安:西安交通大學(xué)出版社,1999.4謝華,都金康,基于優(yōu)化理論和GIS空間分析技術(shù)的公交站點(diǎn)規(guī)劃方法,武漢理工大學(xué)學(xué)報(bào)(交通科學(xué)與工程版),第28卷:第6期,2004.附錄附錄一:#include <stdio.h>#include <stdlib.h>#define N 7 /*節(jié)點(diǎn)個(gè)數(shù)*

33、/int main() double eNN,dN; int v; /*目的節(jié)點(diǎn)*/ int i,j,min,x; long p=0;int pathN;for(i=0;i<N;i+) /*節(jié)點(diǎn)從0開始計(jì)數(shù)*/ printf("Input the weights to node %dn",i+1);for(j=0;j<N;j+) scanf("%lf",&eij); /*不相鄰節(jié)點(diǎn)間邊權(quán)用負(fù)數(shù)表示*/ if(eij<0)eij=32767; printf("Input destination noden");

34、 scanf("%d",&v); /*輸入目的節(jié)點(diǎn)*/ v-=1; /*初始化*/ for(i=0;i<N;i+) di=eiv;pathi=v; p|=1<<v; while(1) min=32767;for(j=0;j<N;j+) if(p&(1<<j)continue; if(min>dj) i=j;min=dj; p|=1<<i;if(p>=(1<<N)-1) break;for(j=0;j<N;j+) if(p&(1<<j)continue; min=

35、32767; for(i=0;i<N;i+)if(min>di+eji) min=di+eji; x=i; if(dj>min) dj=min;pathj=x; printf("*result:*n"); for(i=0;i<N;i+) if(i=v) continue;printf("P%d->P%dn",i+1,pathi+1); exit(EXIT_SUCCESS附錄二:#include<iostream>using namespace std;int road1111=0,673,0,0,0,0,0,1200,609,673,0,527,0,0,0,0,0,677,0,527,300,0,0,300,0,300,721,694,0,0,806,0,0,0,300,0,385,355,0,0,513,274,0,0,0,0,385,0,444,0,0,0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論