版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、人教版高中數(shù)學(xué)必修一教案模板 在人類歷史發(fā)展和.生活中,數(shù)學(xué)也發(fā)揮著不可替代的作用,也是學(xué)習(xí)和研究現(xiàn)代科學(xué)技術(shù)必不可少的基本工具。這次我給大家整理了人教版高中數(shù)學(xué)必修一教案模板,供大家閱讀參考,希望大家喜歡。 人教版高中數(shù)學(xué)必修一教案模板1 重點(diǎn)難點(diǎn)教學(xué): 1.正確理解映射的概念; 2.函數(shù)相等的兩個(gè)條件; 3.求函數(shù)的定義域和值域。 一.教學(xué)過(guò)程: 1.使學(xué)生熟練掌握函數(shù)的概念和映射的定義; 2.使學(xué)生能夠根據(jù)已知條件求出函數(shù)的定義域和值域;3.使學(xué)生掌握函數(shù)的三種表示方法。 二.教學(xué)內(nèi)容: 1.函數(shù)的定義 設(shè)A、B是兩個(gè)非空的數(shù)集,如果按照某種確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)_
2、,在集合B中都有確定的數(shù)()f_和它對(duì)應(yīng),那么稱:fAB®為從集合A到集合B的一個(gè)函數(shù)(function),記作: (),yf_A 其中,_叫自變量,_的取值范圍A叫作定義域(domain),與_的值對(duì)應(yīng)的y值叫函數(shù)值,函數(shù)值的集合()|f_AÎ叫值域(range)。顯然,值域是集合B的子集。 注意: “y=f(_)”是函數(shù)符號(hào),可以用任意的字母表示,如“y=g(_)”; 函數(shù)符號(hào)“y=f(_)”中的f(_)表示與_對(duì)應(yīng)的函數(shù)值,一個(gè)數(shù),而不是f乘_. 2.構(gòu)成函數(shù)的三要素定義域、對(duì)應(yīng)關(guān)系和值域。 3、映射的定義 設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)
3、于集合A中的任意 一個(gè)元素_,在集合B中都有確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:AB為從集合A到集合B的一個(gè)映射。 4.區(qū)間及寫法: 設(shè)a、b是兩個(gè)實(shí)數(shù),且a (1)滿足不等式a_b££的實(shí)數(shù)_的集合叫做閉區(qū)間,表示為a,b; (2)滿足不等式a_b<<的實(shí)數(shù)_的集合叫做開(kāi)區(qū)間,表示為(a,b); 5.函數(shù)的三種表示方法解析法列表法圖像法 人教版高中數(shù)學(xué)必修一教案模板2 集 合 教學(xué)目標(biāo): 1、理解集合的概念和性質(zhì). 2、了解元素與集合的表示方法. 3、熟記有關(guān)數(shù)集. 4、培養(yǎng)學(xué)生認(rèn)識(shí)事物的能力. 教學(xué)重點(diǎn): 集合概念、性質(zhì) 教學(xué)難點(diǎn): 集合概念的理解 教學(xué)過(guò)
4、程: 1、 定義: 集合:一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合(集). 元素:集合中每個(gè)對(duì)象叫做這個(gè)集合的元素. 由此上述例中集合的元素是什么? 例(1)的元素為1、3、5、7, 例(2)的元素為到兩定點(diǎn)距離等于兩定點(diǎn)間距離的點(diǎn), 例(3)的元素為滿足不等式3_-2 _+3的實(shí)數(shù)_, 例(4)的元素為所有直角三角形, 例(5)為高一·六班全體男同學(xué). 一般用大括號(hào)表示集合, 如我校的籃球隊(duì)員,太平洋、大西洋、印度洋、北冰洋。則上幾例可表示為 為方便,常用大寫的拉丁字母表示集合:A=我校的籃球隊(duì)員 ,B=1,2,3,4,5 (1)確定性;(2)互異性;(3)無(wú)序性. 3、元素與
5、集合的關(guān)系:隸屬關(guān)系 元素與集合的關(guān)系有“屬于”及“不屬于Ï(Ï 也可表示為)兩種。 如A=2,4,8,16,則4A,8A,32 Ï A. 集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集A 記作 aÎA ,相反,a不屬于集A 記作 aÏA (或) 注:1、集合通常用大寫的拉丁字母表示,如A、B、C、P、Q 元素通常用小寫的拉丁字母表示,如a、b、c、p、q 2、“”的開(kāi)口方向,不能把a(bǔ)A顛倒過(guò)來(lái)寫。 注:(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說(shuō),自然數(shù)集包括數(shù)0。 (2)非負(fù)整數(shù)集內(nèi)排除0的集。記作N_或N+ 。Q、
6、Z、R等其它數(shù)集內(nèi)排除0 的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z_ 請(qǐng)回答:已知a+b+c=m,A=_|a_2+b_+c=m,判斷1與A的關(guān)系。 1.1.2 集合間的基本關(guān)系 教學(xué)目標(biāo):1.理解子集、真子集概念; 2.會(huì)判斷和證明兩個(gè)集合包含關(guān)系; 3.理解“ ”、“”的含義; 4.會(huì)判斷簡(jiǎn)單集合的相等關(guān)系; 5.滲透問(wèn)題相對(duì)的觀點(diǎn)。 教學(xué)重點(diǎn):子集的概念、真子集的概念 教學(xué)難點(diǎn):元素與子集、屬于與包含間區(qū)別、描述法給定集合的運(yùn)算 教學(xué)過(guò)程: 觀察下面幾組集合,集合A與集合B具有什么關(guān)系? (1) A=1,2,3,B=1,2,3,4,5. (2) A=_|_3,B=_|3_-6
7、0. (3) A=正方形,B=四邊形. (4) A=Æ,B=0. (5)A=銀川九中高一(11)班的女生,B=銀川九中高一(11)班的學(xué)生。 1.子集 定義:一般地,對(duì)于兩個(gè)集合A與B,如果集合A中的任何一個(gè)元素都是集合B的元素,我們就說(shuō)集合A包含于集合B,或集合B包含集合A,記作AÍB(或BÊA),即若任意_ÎA,有_ÎB,則AÍB(或AÌB)。 這時(shí)我們也說(shuō)集合A是集合B的子集(subset)。 如果集合A不包含于集合B,或集合B不包含集合A,就記作AB(或BA),即:若存在_ÎA,有_ÏB,則AB(
8、或BA) 說(shuō)明:AÍB與BÊA是同義的,而AÍB與BÍA是互逆的。 規(guī)定:空集Æ是任何集合的子集,即對(duì)于任意一個(gè)集合A都有ÆÍA。 (2)除去Æ與A本身外,集合A的其它子集與集合A的關(guān)系如何? 3.真子集: 由“包含”與“相等”的關(guān)系,可有如下結(jié)論: (1)AÍA (任何集合都是其自身的子集); (2)若AÍB,而且A¹B(即B中至少有一個(gè)元素不在A中),則稱集合A是集合B的真子集(proper subset),記作A B。(空集是任何非空集合的真 子集) (3)對(duì)于集合A,B,C,若
9、AB,BC,即可得出AC;對(duì)A B,B C,同樣 有A C, 即:包含關(guān)系具有“傳遞性”。 4.證明集合相等的方法:第3 / 7頁(yè) (1) 證明集合A,B中的元素完全相同;(具體數(shù)據(jù)) (2) 分別證明AÍB和BÍA即可。(抽象情況) 對(duì)于集合A,B,若AÍB而且BÍA,則A=B。 1.1.3集合的基本運(yùn)算 教學(xué)目的:(1)理解兩個(gè)集合的并集與交集的的含義,會(huì)求兩個(gè)簡(jiǎn)單集合的并集與交集; (2)理解在給定集合中一個(gè)子集的補(bǔ)集的含義,會(huì)求給定子集的補(bǔ)集; (3)能用Venn圖表達(dá)集合的關(guān)系及運(yùn)算,體會(huì)直觀圖示對(duì)理解抽 象概念的作用。 教學(xué)重點(diǎn):集合的交集與
10、并集、補(bǔ)集的概念; 教學(xué)難點(diǎn):集合的交集與并集、補(bǔ)集“是什么”,“為什么”,“怎樣做”; 【知識(shí)點(diǎn)】 1. 并集 一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,稱為集合A與B的并集(Union) 記作:AB 讀作:“A并B” 即: AB=_|_A,或_B Venn圖表示: 第4 / 7頁(yè) A與B的所有元素來(lái)表示。 A與B的交集。 2. 交集 一般地,由屬于集合A且屬于集合B的元素所組成的集合,叫做集合A與B的交集(intersection)。 記作:AB 讀作:“A交B” 即: AB=_|A,且_B 交集的Venn圖表示 說(shuō)明:兩個(gè)集合求交集,結(jié)果還是一個(gè)集合,是由集合A與B的公共元
11、素組成的集合。 拓展:求下列各圖中集合A與B的并集與交集A 說(shuō)明:當(dāng)兩個(gè)集合沒(méi)有公共元素時(shí),兩個(gè)集合的交集是空集,不能說(shuō)兩個(gè)集合沒(méi)有交集 3. 補(bǔ)集 全集:一般地,如果一個(gè)集合含有我們所研究問(wèn)題中所涉及的所有元素,那么就稱這個(gè)集合為全集(Universe),通常記作U。 補(bǔ)集:對(duì)于全集U的一個(gè)子集A,由全集U中所有不屬于集合A的所有元素組成的集合稱為集合A相對(duì)于全集U的補(bǔ)集(complementary set),簡(jiǎn)稱為集合A的補(bǔ)集, 記作:CUA 即:CUA=_|_U且_A 第5 / 7頁(yè) 補(bǔ)集的Venn圖表示 說(shuō)明:補(bǔ)集的概念必須要有全集的限制 4. 求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)
12、算結(jié)果仍然還是集合,區(qū)分 交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問(wèn)題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語(yǔ)言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法。 5. 集合基本運(yùn)算的一些結(jié)論: ABÍA,ABÍB,AA=A,AÆ=Æ,AB=BA AÍAB,BÍAB,AA=A,AÆ=A,AB=BA (CUA)A=U,(CUA)A=Æ 若AB=A,則AÍB,反之也成立 若AB=B,則AÍB,反之也成立 若_(AB),則_A且_B 若_(AB),則_A,或_B
13、164;例題精講: 【例1】設(shè)集合U=R,A=_|-1£_£5,B=_|3<_<9,求AIB,ðU(AUB). 解:在數(shù)軸上表示出集合A、B 【例2】設(shè)A=_ÎZ|_|£6,B=1,2,3,C=3,4,5,6,求: (1)AI(BIC); (2)AIðA(BUC). 【例3】已知集合A=_|-2<_<4,B=_|_£m,且AIB=A,求實(shí)數(shù)m的取值范圍. _且_ÎN【例4】已知全集U=_|_<10,,A=2,4,5,8,B=1,3,5,8,求 CU(AUB),CU(AIB),(CUA)
14、I(CUB), (CUA)U(CUB),并比較它們的關(guān)系. 人教版高中數(shù)學(xué)必修一教案模板3 幾類不同增長(zhǎng)的函數(shù)模型 【課 型】新授課 【教學(xué)目標(biāo)】 結(jié)合實(shí)例體會(huì)直線上升、指數(shù)爆炸、對(duì)數(shù)增長(zhǎng)等不同增長(zhǎng)的函數(shù)模型意義, 理解它們的增長(zhǎng)差異性. 【教學(xué)重點(diǎn)、難點(diǎn)】 1. 教學(xué)重點(diǎn) 將實(shí)際問(wèn)題轉(zhuǎn)化為函數(shù)模型,比較常數(shù)函數(shù)、一次函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)模型的增長(zhǎng)差異,結(jié)合實(shí)例體會(huì)直線上升、指數(shù)爆炸、對(duì)數(shù)增長(zhǎng)等不同函數(shù)類型增長(zhǎng)的含義. 2.教學(xué)難點(diǎn) 選擇合適的數(shù)學(xué)模型分析解決實(shí)際問(wèn)題. 【學(xué)法與教學(xué)用具】 1. 學(xué)法:學(xué)生通過(guò)閱讀教材,動(dòng)手畫圖,自主學(xué)習(xí)、思考,并相互討論,進(jìn)行探索. 2.教學(xué)用具:多媒體
15、. 【教學(xué)過(guò)程】 (一)引入實(shí)例,創(chuàng)設(shè)情景. 教師引導(dǎo)學(xué)生閱讀例1,分析其中的數(shù)量關(guān)系,思考應(yīng)當(dāng)選擇怎樣的函數(shù)模型來(lái)描述;由學(xué)生自己根據(jù)數(shù)量關(guān)系,歸納概括出相應(yīng)的函數(shù)模型,寫出每個(gè)方案的函數(shù)解析式,教師在數(shù)量關(guān)系的分析、函數(shù)模型的選擇上作指導(dǎo). (二)互動(dòng)交流,探求新知. 1. 觀察數(shù)據(jù),體會(huì)模型. 教師引導(dǎo)學(xué)生觀察例1表格中三種方案的數(shù)量變化情況,體會(huì)三種函數(shù)的增長(zhǎng)差異,說(shuō)出自己的發(fā)現(xiàn),并進(jìn)行交流. 2. 作出圖象,描述特點(diǎn). 教師引導(dǎo)學(xué)生借助計(jì)算器作出三個(gè)方案的函數(shù)圖象,分析三種方案的不同變化趨勢(shì),并進(jìn)行描述,為方案選擇提供依據(jù). (三)實(shí)例運(yùn)用,鞏固提高. 1. 教師引導(dǎo)學(xué)生分析影響方案
16、選擇的因素,使學(xué)生認(rèn)識(shí)到要做出正確選擇除了考慮每天的收益,還要考慮一段時(shí)間內(nèi)的總收益.學(xué)生通過(guò)自主活動(dòng),分析整理數(shù)據(jù),并根據(jù)其中的信息做出推理判斷,獲得累計(jì)收益并給出本例的完整解答,然后全班進(jìn)行交流. 2. 教師引導(dǎo)學(xué)生分析例2中三種函數(shù)的不同增長(zhǎng)情況對(duì)于獎(jiǎng)勵(lì)模型的影響,使學(xué)生明確問(wèn)題的實(shí)質(zhì)就是比較三個(gè)函數(shù)的增長(zhǎng)情況,進(jìn)一步體會(huì)三種基本函數(shù)模型在實(shí)際中廣泛應(yīng)用,體會(huì)它們的增長(zhǎng)差異. 3.教師引導(dǎo)學(xué)生分析得出:要對(duì)每一個(gè)獎(jiǎng)勵(lì)模型的獎(jiǎng)金總額是否超出5萬(wàn)元,以及獎(jiǎng)勵(lì)比例是否超過(guò)25%進(jìn)行分析,才能做出正確選擇,學(xué)會(huì)對(duì)數(shù)據(jù)的特點(diǎn)與作用進(jìn)行分析、判斷。 4.教師引導(dǎo)學(xué)生利用解析式,結(jié)合圖象,對(duì)例2的三個(gè)
17、模型的增長(zhǎng)情況進(jìn)行分析比較,寫出完整的解答過(guò)程.進(jìn)一步認(rèn)識(shí)三個(gè)函數(shù)模型的增長(zhǎng)差異,并掌握解答的規(guī)范要求. 5.教師引導(dǎo)學(xué)生通過(guò)以上具體函數(shù)進(jìn)行比較分析,探究?jī)绾瘮?shù)(0)、指數(shù)函數(shù)(1)、對(duì)數(shù)函數(shù)(1)在區(qū)間(0,+)上的增長(zhǎng)差異,并從函數(shù)的性質(zhì)上進(jìn)行研究、論證,同學(xué)之間進(jìn)行交流總結(jié),形成結(jié)論性報(bào)告.教師對(duì)學(xué)生的結(jié)論進(jìn)行評(píng)析,借助信息技術(shù)手段進(jìn)行驗(yàn)證演示. 6. 課堂練習(xí) 教材P98練習(xí)1、2,并由學(xué)生演示,進(jìn)行講評(píng)。 (四)歸納總結(jié),提升認(rèn)識(shí). 教師通過(guò)計(jì)算機(jī)作圖進(jìn)行總結(jié),使學(xué)生認(rèn)識(shí)直線上升、指數(shù)爆炸、對(duì)數(shù)增長(zhǎng)等不同函數(shù)模型的含義及其差異,認(rèn)識(shí)數(shù)學(xué)與現(xiàn)實(shí)生活、與其他學(xué)科的密切聯(lián)系,從而體會(huì)數(shù)學(xué)
18、的實(shí)用價(jià)值和內(nèi)在變化規(guī)律. (五)布置作業(yè) 教材P107練習(xí)第2題 收集一些.生活中普遍使用的遞增的一次函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的實(shí)例,對(duì)它們的增長(zhǎng)速度進(jìn)行比較,了解函數(shù)模型的廣泛應(yīng)用,并思考。有時(shí)同一個(gè)實(shí)際問(wèn)題可以建立多個(gè)函數(shù)模型,在具體應(yīng)用函數(shù)模型時(shí),應(yīng)該怎樣選用合理的函數(shù)模型. 人教版高中數(shù)學(xué)必修一教案模板4 教學(xué)準(zhǔn)備 1. 教學(xué)目標(biāo) 1.知識(shí)與技能 理解函數(shù)(結(jié)合二次函數(shù))零點(diǎn)的概念,領(lǐng)會(huì)函數(shù)零點(diǎn)與相應(yīng)方程要的關(guān)系,掌握零點(diǎn)存在的判定條件. 培養(yǎng)學(xué)生的觀察能力. 培養(yǎng)學(xué)生的抽象概括能力. 2.過(guò)程與方法 通過(guò)觀察二次函數(shù)圖象,并計(jì)算函數(shù)在區(qū)間端點(diǎn)上的函數(shù)值之積的特點(diǎn),找到連續(xù)函數(shù)在某個(gè)區(qū)間上存在零點(diǎn)的判斷方法. 讓學(xué)生歸納整理本節(jié)所學(xué)知識(shí). 2. 過(guò)程與方法 通過(guò)觀察二次函數(shù)圖象,并計(jì)算函數(shù)在區(qū)間端點(diǎn)上的函數(shù)值之積的特點(diǎn),找到連續(xù)函數(shù)在某個(gè)區(qū)間上存在零點(diǎn)的判斷方法. 讓學(xué)生歸納整理本節(jié)所學(xué)知識(shí). 3.情感、態(tài)度與價(jià)值觀 在函數(shù)與方程的聯(lián)系中體驗(yàn)數(shù)學(xué)中的轉(zhuǎn)化思想的意義和價(jià)值. 2. 教學(xué)重點(diǎn)/難點(diǎn) 重點(diǎn):零點(diǎn)的概念及存在性的判定.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年互聯(lián)網(wǎng)醫(yī)療解決方案技術(shù)合作協(xié)議
- 2025年雙方協(xié)商勞務(wù)派遣協(xié)議
- 2025年P(guān)PP項(xiàng)目合作財(cái)務(wù)管理協(xié)議
- 主材供應(yīng)及合作框架合同 2024年版一
- 2025版區(qū)塊鏈技術(shù)應(yīng)用合伙人合作協(xié)議3篇
- 2025年度智能建筑安裝工程承包技師合同4篇
- 二零二五年度酒吧食品安全管理與承包合同
- 2025年度城市公交車定點(diǎn)維修與應(yīng)急保障合同
- 二零二五年度汽車維修免責(zé)聲明適用于車主自帶配件
- 2025年度地鐵隧道鋼筋工勞務(wù)施工安全質(zhì)量保障合同
- 建筑結(jié)構(gòu)課程設(shè)計(jì)成果
- 班級(jí)建設(shè)方案中等職業(yè)學(xué)校班主任能力大賽
- 纖維增強(qiáng)復(fù)合材料 單向增強(qiáng)材料Ⅰ型-Ⅱ 型混合層間斷裂韌性的測(cè)定 編制說(shuō)明
- 習(xí)近平法治思想概論教學(xué)課件緒論
- 寵物會(huì)展策劃設(shè)計(jì)方案
- 孤殘兒童護(hù)理員(四級(jí))試題
- 梁湘潤(rùn)《子平基礎(chǔ)概要》簡(jiǎn)體版
- 醫(yī)院急診醫(yī)學(xué)小講課課件:急診呼吸衰竭的處理
- 腸梗阻導(dǎo)管在臨床中的使用及護(hù)理課件
- 小學(xué)英語(yǔ)單詞匯總大全打印
- 衛(wèi)生健康系統(tǒng)安全生產(chǎn)隱患全面排查
評(píng)論
0/150
提交評(píng)論