專題10 數(shù)列 10.4數(shù)列求和 題型歸納講義-2022屆高三數(shù)學(xué)一輪復(fù)習(xí)(解析版)_第1頁
專題10 數(shù)列 10.4數(shù)列求和 題型歸納講義-2022屆高三數(shù)學(xué)一輪復(fù)習(xí)(解析版)_第2頁
專題10 數(shù)列 10.4數(shù)列求和 題型歸納講義-2022屆高三數(shù)學(xué)一輪復(fù)習(xí)(解析版)_第3頁
專題10 數(shù)列 10.4數(shù)列求和 題型歸納講義-2022屆高三數(shù)學(xué)一輪復(fù)習(xí)(解析版)_第4頁
專題10 數(shù)列 10.4數(shù)列求和 題型歸納講義-2022屆高三數(shù)學(xué)一輪復(fù)習(xí)(解析版)_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、專題十 數(shù)列講義10.4 數(shù)列求和知識(shí)梳理.數(shù)列求和1公式法(1)等差數(shù)列an的前n項(xiàng)和snna1.推導(dǎo)方法:倒序相加法(2)等比數(shù)列an的前n項(xiàng)和sn推導(dǎo)方法:乘公比,錯(cuò)位相減法(3)一些常見的數(shù)列的前n項(xiàng)和:123n;2462nn(n1);135(2n1)n2.2幾種數(shù)列求和的常用方法(1)分組轉(zhuǎn)化求和法:一個(gè)數(shù)列的通項(xiàng)公式是由若干個(gè)等差或等比或可求和的數(shù)列組成的,則求和時(shí)可用分組求和法,分別求和后相加減(2)裂項(xiàng)相消法:把數(shù)列的通項(xiàng)拆成兩項(xiàng)之差,在求和時(shí)中間的一些項(xiàng)可以相互抵消,從而求得前n項(xiàng)和(3)錯(cuò)位相減法:如果一個(gè)數(shù)列的各項(xiàng)是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列的對(duì)應(yīng)項(xiàng)之積構(gòu)成的,那么求這

2、個(gè)數(shù)列的前n項(xiàng)和即可用錯(cuò)位相減法求解(4)倒序相加法:如果一個(gè)數(shù)列an與首末兩端等“距離”的兩項(xiàng)的和相等或等于同一個(gè)常數(shù),那么求這個(gè)數(shù)列的前n項(xiàng)和即可用倒序相加法求解題型一. 裂項(xiàng)相消1數(shù)列an的通項(xiàng)公式an=1n(n+1),已知它的前n項(xiàng)和sn=99100,則項(xiàng)數(shù)n()a98b99c100d101【解答】解:列an的通項(xiàng)公式an=1n(n+1)=1n1n+1,所以sn=112+1213+1n1n+1=11n+1,由于前n項(xiàng)和sn=99100,所以11n+1=99100,解得n99故選:b2已知等差數(shù)列an滿足a310,a1+a417(1)求an的通項(xiàng)公式;(2)設(shè)bn=3anan+1,求數(shù)列

3、bn的前n項(xiàng)和sn【解答】解:(1)設(shè)首項(xiàng)為a1,公差為d的等差數(shù)列,滿足a310,a1+a417所以a3=10a1+a4=17,解得a1=4d=3,所以an4+3(n1)3n+1(2)由(1)得bn=3anan+1=13n+113n+4,所以snb1+b2+bn=1417+17110+13n+113n+4=1413n+43已知數(shù)列an的前n項(xiàng)和為sn,若4sn(2n1)an+1+1,且a11(1)求數(shù)列an的通項(xiàng)公式;(2)設(shè)cn=1an(an+2),數(shù)列cn的前n項(xiàng)和為tn,求tn【解答】解:(1)在4sn(2n1)an+1+1中,令n1,得a23,4sn(2n1)an+1+1,當(dāng)n2時(shí),

4、4sn1(2n3)an+1,兩式相減,得4an(2n1)an+1(2n3)an(n2),(2n+1)an(2n1)an+1,即an+1an=2n+12n1(n2)an=anan1an1an2an2an3a3a2a2a1a1=2n12n32n32n52n52n753311=2n1,故an2n1(2)cn=1an(an+2)=1(2n1)(2n+1)=12(12n112n+1),tnc1+c2+cn=12(113)+(1315)+(1517)+(12n112n+1)=12(112n+1)=n2n+1,所以tn=n2n+1題型二. 錯(cuò)位相減1已知等差數(shù)列an公差不為零,且滿足:a12,a1,a2,a

5、5成等比數(shù)列()求數(shù)列an的通項(xiàng)公式;()設(shè)bn=3nan,求數(shù)列bn的前n項(xiàng)和【解答】解:()設(shè)等差數(shù)列an的公差為d,d0,由題,a1=2a22=a1a5,即(a1+d)2=a1(a1+4d),解得d4an2+4(n1)4n2()bn=3nan=(4n2)3n2(2n1)3n,設(shè)數(shù)列bn的前n項(xiàng)和為tn,tn=2×1×31+2×3×32+2×5×33+2(2n1)×3n,3tn=2×1×32+2×3×33+2×5×34+2(2n1)×3n+1,得:2t

6、n=2×1×3+2×2×32+2×2×33+2×2×3n2(2n1)×3n+1=6+4×32(13n1)132(2n1)×3n+1=124(n1)3n+1,tn=6+2(n1)3n+1數(shù)列bn的前n項(xiàng)和tn=6+2(n1)3n+12已知等差數(shù)列an的前n項(xiàng)和為sn,s530,s756;各項(xiàng)均為正數(shù)的等比數(shù)列bn滿足b1b2=13,b2b3=127(1)求數(shù)列an和bn的通項(xiàng)公式;(2)求數(shù)列anbn的前n項(xiàng)和tn【解答】解:(1)設(shè)等差數(shù)列an的首項(xiàng)為a1,公差為d,由s530,s75

7、6,得5a1+5×4d2=307a1+7×6d2=56,解得a1=2d=2an2+2(n1)2n;設(shè)等比數(shù)列bn的公比為q(q0),由b1b2=13,b2b3=127,得b12q=13b12q3=127,解得b1=1q=13bn=(13)n1;(2)anbn=2n3n1=2n3n1令n3n1的前n項(xiàng)和為rn,則rn=130+231+332+n3n1,13rn=13+232+333+n13n1+n3n 兩式作差可得:23rn=1+13+132+13n1n3n=1×(113n)113n3n=322n+323n,rn=942n+343n1則tn=2rn=922n+323

8、n13(2015·山東)設(shè)數(shù)列an的前n項(xiàng)和為sn,已知2sn3n+3()求an的通項(xiàng)公式;()若數(shù)列bn,滿足anbnlog3an,求bn的前n項(xiàng)和tn【解答】解:()因?yàn)?sn3n+3,所以2a131+36,故a13,當(dāng)n1時(shí),2sn13n1+3,此時(shí),2an2sn2sn13n3n12×3n1,即an3n1,所以an=3,n=13n1,n1.()因?yàn)閍nbnlog3an,所以b1=13,當(dāng)n1時(shí),bn31nlog33n1(n1)×31n,所以t1b1=13;當(dāng)n1時(shí),tnb1+b2+bn=13+1×31+2×32+(n1)×31n

9、,所以3tn1+1×30+2×31+3×32+(n1)×32n,兩式相減得:2tn=23+30+31+32+32n(n1)×31n=23+131n131(n1)×31n=1366n+32×3n,所以tn=13126n+34×3n,經(jīng)檢驗(yàn),n1時(shí)也適合,綜上可得tn=13126n+34×3n題型三. 分組求和1已知數(shù)列an是公差不為零的等差數(shù)列,a12,且a1,a2,a4成等比數(shù)列(1)求數(shù)列an的通項(xiàng)公式;(2)設(shè)bnan2an,求數(shù)列bn的前n項(xiàng)和sn【解答】解:(1)由題意,設(shè)等差數(shù)列an的公差為d(

10、d0),則a22+d,a42+3d,a1,a2,a4成等比數(shù)列,a22a1a4,即(2+d)22(2+3d),整理,得d22d0,解得d0(舍去),或d2,an2+2(n1)2n,nn*(2)由(1)知,設(shè)bnan2an=2n22n2n4n,故snb1+b2+bn(2×141)+(2×242)+(2n4n)2×(1+2+n)(41+42+4n)2×n(n+1)24(14n)14n2+n+434n+132在公差不為0的等差數(shù)列an中,a1,a3,a9成公比為a3的等比數(shù)列,又?jǐn)?shù)列bn滿足bn=2an,n=2k1,2n,n=2k,(kn*)(1)求數(shù)列an的

11、通項(xiàng)公式;(2)求數(shù)列bn的前2n項(xiàng)和t2n【解答】解:(1)公差d不為0的等差數(shù)列an中,a1,a3,a9成公比為a3的等比數(shù)列,可得a32a1a9,a3a1a3,可得(a1+2d)2a1(a1+8d),a11,化簡可得a1d1,即有ann,nn*;(2)由(1)可得bn=2n,n=2k12n,n=2k,kn*;前2n項(xiàng)和t2n(2+8+16+22n1)+(4+8+12+4n)=2(14n)14+12n(4+4n)=2(4n1)3+2n(n+1)3已知數(shù)列an、bn滿足:an+1an+bn,bn+2為等比數(shù)列,且b12,a24,a310(1)試判斷數(shù)列bn是否為等差數(shù)列,并說明理由;(2)求

12、數(shù)列an的前n項(xiàng)和sn【解答】解:(1)數(shù)列bn不是等差數(shù)列理由如下:由an+1anbn,且a24,a310,b12,得b2a3a26,又?jǐn)?shù)列bn+2為等比數(shù)列,數(shù)列bn+2的首項(xiàng)為4,公比為2b3+2=4×22=16,得b314,顯然2b212b1+b316故數(shù)列bn不是等差數(shù)列;(2)結(jié)合(1)知,等比數(shù)列bn+2的首項(xiàng)為4,公比為2故bn+2=42n1=2n+1,bn=2n+12an+1anbn,b12,a24,a12,anan1=2n2(n2)令n2,(n1)得a2a1=222,a3a2=232,anan1=2n2(n2),累加得an2=(22+23+2n)2(n1)(n2)

13、an=(2+22+23+2n)2n+2=2(2n1)212n+2=2n+12n(n2)又a12滿足上式,an=2n+12nsn=(222×1)+(232×2)+(2n+12n)(22+23+2n+1)2(1+2+n)=4(2n1)212×n(n+1)2=2n+2n2n4題型四. 討論奇偶、絕對(duì)值求和1數(shù)列an的前n項(xiàng)和記為sn,對(duì)任意的正整數(shù)n,均有4sn(an+1)2,且an0(1)求a1及an的通項(xiàng)公式;(2)令bn=(1)n14nanan+1,求數(shù)列bn的前n項(xiàng)和tn【解答】解:(1)當(dāng)n1時(shí),4s1=(a1+1)2,則a11;當(dāng)n2時(shí),由4sn(an+1)

14、2,知4sn1(an1+1)2,聯(lián)立兩式,得4an(an+1)2(an1+1)2,化簡得(an+an1)(anan12)0,an0,anan120,即an是以a11為首項(xiàng),2為公差的等差數(shù)列,故an2n1;(2)bn=(1)n14nanan+1=(1)n14n(2n1)(2n+1)=(1)n1(12n1+12n+1),下面對(duì)n分奇偶數(shù)討論:當(dāng)n為偶數(shù)時(shí),tn(1+13)(13+15)+(12n3+12n1)(12n1+12n+1)=112n+1=2n2n+1,當(dāng)n為奇數(shù)時(shí),tn(1+13)(13+15)+(12n3+12n1)+(12n1+12n+1)=1+12n+1=2n+22n+1,所以t

15、n=2n+22n+1,n為奇數(shù)2n2n+1,n為偶數(shù)2已知等差數(shù)列an前n項(xiàng)和為sn,a59,s525(1)求數(shù)列an的通項(xiàng)公式及前n項(xiàng)和sn;(2)設(shè)bn=(1)nsn,求bn前2n項(xiàng)和t2n【解答】解:(1)由題意,設(shè)等差數(shù)列an的公差為d,則a5=a1+4d=9s5=5a1+5×42d=25,整理,得a1+4d=9a1+2d=5,解得a1=1d=2,an1+2(n1)2n1,nn*,sn=n(1+2n1)2=n2(2)由(1)知,設(shè)bn=(1)nsn=(1)nn2t2nb1+b2+b2n(b1+b2)+(b3+b4)+(b2n1+b2n)(12+22)+(32+42)+(2n1

16、)2+(2n)2(21)×(2+1)+(43)×(4+3)+2n(2n1)×2n+(2n1)1+2+3+4+(2n1)+2n=2n(1+2n)2 2n2+n3已知數(shù)列an滿足a12,an+12an+4(1)求a2,a3,a4;(2)猜想an的通項(xiàng)公式并加以證明;(3)求數(shù)列|an|的前n項(xiàng)和sn【解答】解:(1)由已知,易得a20,a34,a412(2)猜想an=2n4因?yàn)閍n+12an+4,所以an+1+42(an+4),an+1+4an+4=2,則an+4是以2為首項(xiàng),以2為公比的等比數(shù)列,所以an+4=2n,所以=an=2n4(3)當(dāng)n1時(shí),a120,s1|

17、a1|2;當(dāng)n2時(shí),an0,所以sn=a1+a2+an=2+(224)+(2n4)=2+22+2n4(n1)=2(12n)124(n1)=2n+14n+2,又n1時(shí)滿足上式所以,當(dāng)nn*時(shí),sn=2n+14n+2題型五. 數(shù)列求和選填綜合1首項(xiàng)為正數(shù)的等差數(shù)列an中,a3a4=75,當(dāng)其前n項(xiàng)和sn取最大值時(shí),n的值為()a5b6c7d8【解答】解:首項(xiàng)為正數(shù)的等差數(shù)列an中,a3a4=75,5(a1+2d)7(a1+3d),整理,得:a1=112d,a10,d0,sn=112nd+n(n1)2d=d2(n6)218d,當(dāng)其前n項(xiàng)和sn取最大值時(shí),n的值為6故選:b2在等比數(shù)列an中,a2a3

18、2a1,且a4與2a7的等差中項(xiàng)為17,設(shè)bna2n1a2n,nn*,則數(shù)列bn的前2n項(xiàng)和為112(142n)【解答】解:等比數(shù)列an中,a2a32a1,且a4與2a7的等差中項(xiàng)為17,設(shè)首項(xiàng)為a1,公比為q,則:a2a3=2a1a4+2a7=34,整理得:a1q3=2a1q3+2a1q6=34,解得:a1=14q=2則:an=a1qn1=2n3,所以:bna2n1a2n=22n3222n3=22n4,則:t2n=14(142n)14=112(142n)故答案為:112(142n)3已知數(shù)列an的前n項(xiàng)和為sn,a11,a22且對(duì)于任意n1,nn*滿足sn+1+sn12(sn+1),則()a

19、a47bs16240ca1019ds20381【解答】解:當(dāng)n2時(shí),sn+1+sn12(sn+1)sn+1snsnsn1+2an+1an+2所以數(shù)列an從第2項(xiàng)起為等差數(shù)列,an=1,n=12n2,n2,所以,a46,a1018sna1+(a2+an)(n1)2=n(n1)+1,s1616×15+1241,s2020×19+1381故選:d4已知數(shù)列an是首項(xiàng)為1,公差為2的等差數(shù)列,數(shù)列bn滿足關(guān)系a1b1+a2b2+a3b3+anbn=12n1,數(shù)列bn的前n項(xiàng)和為sn,則s5的值為()a454b450c446d442【解答】解:數(shù)列an是首項(xiàng)為1,公差為2的等差數(shù)列,

20、可得an1+2(n1)2n1,由a1b1+a2b2+a3b3+anbn=12n1,可得a1b1=121=12,可得b12,又a1b1+a2b2+an1bn1=12n11,且a1b1+a2b2+a3b3+anbn=12n1,兩式相減可得anbn=12n12n1=12n,可得bn(2n1)2n,則s523458716932454,故選:a5已知數(shù)列an滿足a1=32,an+1=3anan+3,若cn=3nan,則c1+c2+cn(2n+1)3n14【解答】解:因?yàn)閍1=32,an+1=3anan+3,所以1an+1=an+33an=13+1an,即1an+11an=13,所以數(shù)列1an是首項(xiàng)1a1

21、=23,公差為13的等差數(shù)列,所以1an=23+13(n1)=n+13,則cn=3nan=(n+1)3n1,則c1+c2+cn=2×30+3×31+4×32+(n+1)×3n1,設(shè)t2×30+3×31+4×32+(n+1)×3n1,則3t2×3+3×32+n×3n1+(n+1)×3n,可得:2t2+3+32+3n1(n+1)×3n1+3n131(n+1)×3n,則t=(2n+1)3n14即c1+c2+cn=(2n+1)3n14故答案為:(2n+1)3n14

22、6已知數(shù)列an的前n項(xiàng)和為sn,a12,snan2,其中為常數(shù),若anbn13n,則數(shù)列bn中的項(xiàng)的最小值為1214【解答】解:根據(jù)題意,數(shù)列an的滿足a12,snan2,當(dāng)n1時(shí),有a1s1a12,即222,解可得2,則sn2an2,則有sn12an12,:an2an2an1,變形可得an2an1,則數(shù)列an是首項(xiàng)為a12,公比為2的等比數(shù)列,則an2n,又由anbn13n,則bn=13n2n,當(dāng)n13時(shí),bn0,當(dāng)n14時(shí),bn0,且bn為遞增數(shù)列,則當(dāng)n14時(shí),bn取得最小值,此時(shí)b14=1214;故答案為:12147已知數(shù)列an和bn首項(xiàng)均為1,且an1an(n2),an+1an,數(shù)列

23、bn的前n項(xiàng)和為sn,且滿足2snsn+1+anbn+10,則s2019()a2019b12019c4037d14037【解答】解:an1an(n2),an+1an,anan+1an,anan+1,另外:a1a2a1,可得a2a11,an12snsn+1+anbn+10,2snsn+1+bn+10,2snsn+1+sn+1sn0,1sn+11sn=2數(shù)列1sn是等差數(shù)列,首項(xiàng)為1,公差為21sn=1+2(n1)2n1,sn=12n1s2019=14037故選:d8已知數(shù)列an滿足:a11,a2=13,b1a1+b2a2+bnan=bn+1an1+6(n2且nn+),等比數(shù)列bn公比q2,令cn

24、=1an,n為奇數(shù),bn,n為偶數(shù),則數(shù)列cn的前n項(xiàng)和s2n2n2n+4n+143【解答】解:因?yàn)閍11,a2=13,b1a1+b2a2+bnan=bn+1an1+6(n2且nn+),可得n2時(shí),b1a1+b2a2=b3a1+6,即b1+3b2b3+6,由等比數(shù)列的bn的公比為q2,即b1+6b14b1+6,解得b12,所以bn2n,當(dāng)n3時(shí),b1a1+b2a2+b3a3=b4a2+6,即2+3×4+8a3=3×16+6,解得a3=15,又b1a1+b2a2+bn1an1=bnan2+6(n3,且nn+),可得,bnan=bn+1an1bnan2,即2nan=2n+1an

25、12nan2,化為1an+1an2=2an1,又1a1+1a3=6=2a2,所以1an為等差數(shù)列,且公差d=1a21a1=2,則1an=1a1+2(n1)2n1,所以cn=2n1,n為奇數(shù)2n,n為偶數(shù),所以s2n1+22+5+24+(4n3)+22n(1+5+4n3)+(22+24+22n)=n(1+4n3)2+4(14n)14 2n2n+4n+143故答案為:2n2n+4n+1439已知數(shù)列an滿足2anan+1+an+3an+1+20,其中a1=12,設(shè)bn=nan+1,若b3為數(shù)列bn中唯一最小項(xiàng),則實(shí)數(shù)的取值范圍是(5,7)【解答】解:2anan+1+an+3an+1+20,an+1

26、=(an+2)2an+3,an+1+1=(an+2)2an+3+1=an+12an+3,1an+1+1=2an+3an+1=2+1an+1,即1an+1+11an+1=2,所以數(shù)列1an+1是公差為2的等差數(shù)列,1a1+1=2,1an+1=2+(n1)×2=2n,bn2n(n),bn+1bn2(n+1)(n+1)2n(n)4n+22,因?yàn)閎3為數(shù)列bn中唯一最小項(xiàng),所以b1b2b3b4b5,當(dāng)n1時(shí),b2b1620,得3,當(dāng)n2時(shí),b3b21020,得5,當(dāng)n3時(shí),4n+220恒成立,即2n+1,即有7所以57故答案為:(5,7)課后作業(yè). 數(shù)列求和1已知各項(xiàng)均不相等的等差數(shù)列an的

27、前四項(xiàng)和s414,且a1,a3,a7成等比(1)求數(shù)列an的通項(xiàng)公式;(2)設(shè)tn為數(shù)列1anan+1的前n項(xiàng)和,若tnan+1對(duì)一切nn*恒成立,求實(shí)數(shù)的最大值【解答】解:(1)各項(xiàng)均不相等的等差數(shù)列an的前四項(xiàng)和s414,且a1,a3,a7成等比設(shè)公差為d,由已知得:4a1+6d=14(a1+2d)2=a1(a1+6d),聯(lián)立解得d1或d0(舍去),a12,故:ann+1(2)由(1)得:1anan+1=1(n+1)(n+2)=1n+11n+2,所以:tn=1213+1314+1n+11n+2=121n+2,=n2(n+2)由于:tnan+1對(duì)一切nn*恒成立,所以:n2(n+2)n+2,

28、解得:2(n+2)2n=2(n+4n)+8,由于:n+4n2n4n4故:2(n+4n)+816,即:16故的最大值為162設(shè)等差數(shù)列an的前n項(xiàng)和為sn,a36,a714(1)求數(shù)列an的通項(xiàng)公式及sn;(2)若_,求數(shù)列bn的前n項(xiàng)和tn在bn2anan;bn=an2+an+12sn;bn(1)nan這三個(gè)條件中任選一個(gè)補(bǔ)充在第(2)問中,并對(duì)其求解【解答】解:(1)設(shè)等差數(shù)列an的公差為d,由a36,a714得4da7a31468,解得d2,所以a1a32d642,所以an2+2(n1)2n;sn=n2(2+2n)n2+n(2)若選擇條件:由(1)可知an2n,則bn2anan2n4n,所以tnb1+b2+bn2×41+4×42+6×43+(2n)4n;4tn2×42+4×43+6×44+(2n)4n+1,兩式相減得:3tn2×41+2×42+2×43+2×4n2n4n+12×4(14n)142n4n+1=83(14n)2n4n+1,所以tn=89(14n)+2n34n+1;若選擇條件:由an2n,snn2+n,得bn=an2+an+12sn=8n2+8n+4n(n+1)=8+4n(n+1)=8+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論