新人教版八年級(jí)上冊(cè)數(shù)學(xué)教案知識(shí)點(diǎn)大綱_第1頁(yè)
新人教版八年級(jí)上冊(cè)數(shù)學(xué)教案知識(shí)點(diǎn)大綱_第2頁(yè)
新人教版八年級(jí)上冊(cè)數(shù)學(xué)教案知識(shí)點(diǎn)大綱_第3頁(yè)
新人教版八年級(jí)上冊(cè)數(shù)學(xué)教案知識(shí)點(diǎn)大綱_第4頁(yè)
新人教版八年級(jí)上冊(cè)數(shù)學(xué)教案知識(shí)點(diǎn)大綱_第5頁(yè)
已閱讀5頁(yè),還剩45頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、第 11 章 三角形教材內(nèi)容本章主要內(nèi)容有三角形的有關(guān)線段、角,多邊形及內(nèi)角和,鑲嵌等。三角形的高、中線和角平分線是三角形中的主要線段,與三角形有關(guān)的角有內(nèi)角、外角。教材通過(guò)實(shí)驗(yàn)讓學(xué)生了解三角形的穩(wěn)定性,在知道三角形的內(nèi)角和等于1800的基礎(chǔ)上,進(jìn)行推理論證,從而得出三角形外角的性質(zhì)。接著由推廣三角形的有關(guān)概念,介紹了多邊形的有關(guān)概念,利用三角形的有關(guān)性質(zhì)研究了多邊形的內(nèi)角和、外角和公式。這些知識(shí)加深了學(xué)生對(duì)三角形的認(rèn)識(shí),既是學(xué)習(xí)特殊三角形的基礎(chǔ),也是研究其它圖形的基礎(chǔ)。最后結(jié)合實(shí)例研究了鑲嵌的有關(guān)問(wèn)題,體現(xiàn)了多邊形內(nèi)角和公式在實(shí)際生活中的應(yīng)用. 教學(xué)目標(biāo)1、理解三角形及有關(guān)概念,會(huì)畫(huà)任意三角

2、形的高、中線、角平分線;2、了解三角形的穩(wěn)定性,理解三角形兩邊的和大于第三邊,會(huì)根據(jù)三條線段的長(zhǎng)度判斷它們能否構(gòu)成三角形;3、會(huì)證明三角形內(nèi)角和等于1800,了解三角形外角的性質(zhì)。4、了解多邊形的有關(guān)概念,會(huì)運(yùn)用多邊形的內(nèi)角和與外角和公式解決問(wèn)題。5、理解平面鑲嵌,知道任意一個(gè)三角形、四邊形或正六邊形可以鑲嵌平面,并能運(yùn)用它們進(jìn)行簡(jiǎn)單的平面鑲嵌設(shè)計(jì)。重點(diǎn)難點(diǎn)三角形三邊關(guān)系、內(nèi)角和,多邊形的外角和與內(nèi)角和公式,鑲嵌是重點(diǎn);三角形內(nèi)角和等于1800的證明,根據(jù)三條線段的長(zhǎng)度判斷它們能否構(gòu)成三角形及簡(jiǎn)單的平面鑲嵌設(shè)計(jì)是難點(diǎn)。11.1.1三角形的邊 教學(xué)目標(biāo) 1 了解三角形的意義, 認(rèn)識(shí)三角形的邊、內(nèi)

3、角、頂點(diǎn),能用符號(hào)語(yǔ)言表示三角形;2 理解三角形三邊不等的關(guān)系,會(huì)判斷三條線段能否構(gòu)成一個(gè)三角形, 并能運(yùn)用它解決有關(guān)的問(wèn)題.3 在觀察、操作、推理、歸納等探索過(guò)程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推理的習(xí)慣;4 體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心 重點(diǎn)難點(diǎn) 三角形的有關(guān)概念和符號(hào)表示,三角形三邊間的不等關(guān)系是重點(diǎn);用三角形三邊不等關(guān)系判定三條線段可否組成三角形是難點(diǎn)。 教學(xué)過(guò)程 一、情景導(dǎo)入三角形是一種最常見(jiàn)的幾何圖形, 投影 1-6 如古埃及金字塔,香港中銀大廈,交通標(biāo)志,等等,處處都有三角形的形象。那么什么叫做三角形呢?二、三角形及有關(guān)概念不在一條直線上的三條線段首

4、尾順次相接組成的圖形叫做三角形。注意:三條線段必須不在一條直線上,首尾順次相接。a b c (1)cba組成三角形的線段叫做三角形的邊,相鄰兩邊所組成的角叫做三角形的內(nèi)角 ,簡(jiǎn)稱角,相鄰兩邊的公共端點(diǎn)是三角形的頂點(diǎn) 。三角形 abc用符號(hào)表示為abc 。三角形 abc的頂點(diǎn) c所對(duì)的邊 ab可用 c 表示 , 頂點(diǎn) b所對(duì)的邊 ac可用 b 表示 , 頂點(diǎn) a所對(duì)的邊 bc可用 a 表示 . 三、三角形三邊的不等關(guān)系探究: 投影 7 任意畫(huà)一個(gè) abc,假設(shè)有一只小蟲(chóng)要從b點(diǎn)出發(fā) , 沿三角形的邊爬到c,它有幾種路線可以選擇 ?各條路線的長(zhǎng)一樣嗎?為什么?有兩條路線:(1)從 bc, (2)從

5、 bac;不一樣, ab+ac bc ;因?yàn)閮牲c(diǎn)之間線段最短。同樣地有 ac+bc ab ab+bcac 由式子我們可以知道什么?三角形的任意兩邊之和大于第三邊. 四、三角形的分類我們知道,三角形按角可分為銳角三角形、鈍角三角形、直角三角形,我們把銳角三角形、鈍角三角形統(tǒng)稱為斜三角形。按角分類 : 三角形直角三角形斜三角形銳角三角形鈍角三角形那么三角形按邊如何進(jìn)行分類呢?請(qǐng)你按“有幾條邊相等”將三角形分類。三邊都相等的三角形叫做等邊三角形 ;有兩條邊相等的三角形叫做等腰三角形 ;三邊都不相等的三角形叫做不等邊三角形 。顯然,等邊三角形是特殊的等腰三角形。按邊分類 : 三角形不等邊三角形等腰三角

6、形底和腰不等的等腰三角形等邊三角形五、例題例用一條長(zhǎng)為18 的細(xì)繩圍成一個(gè)等腰三角形。(1)如果腰長(zhǎng)是底邊的2 倍,那么各邊的長(zhǎng)是多少?( 2)能圍成有一邊長(zhǎng)為4 的等腰三角形嗎?為什么?分析: (1)等腰三角形三邊的長(zhǎng)是多少?若設(shè)底邊長(zhǎng)為x ,則腰長(zhǎng)是多少?(2) “邊長(zhǎng)為 4 ”是什么意思?解: (1)設(shè)底邊長(zhǎng)為x ,則腰長(zhǎng)2 x 。x+2x+2x=18 解得 x=3.6 所以,三邊長(zhǎng)分別為3.6 , 7.2 ,7.2 . (2)如果長(zhǎng)為4 的邊為底邊,設(shè)腰長(zhǎng)為x ,則4+2x=18 解得 x=7 如果長(zhǎng)為 4 的邊為腰,設(shè)底邊長(zhǎng)為x ,則24+x=18 解得 x=10 腰腰底邊頂角底角底

7、角因?yàn)?4+410,出現(xiàn)兩邊的和小于第三邊的情況,所以不能圍成腰長(zhǎng)是4 的等腰三角形。由以上討論可知,可以圍成底邊長(zhǎng)是4 的等腰三角形。五、課堂練習(xí)課本 4 頁(yè)練習(xí) 1、2 題。六、課堂小結(jié)1、三角形及有關(guān)概念;2、三角形的分類;3、三角形三邊的不等關(guān)系及應(yīng)用。作業(yè) :課本 8 頁(yè) 1、2、6;【總結(jié)反思】:11.1.2 三角形的高、中線與角平分線教學(xué)目標(biāo)1、經(jīng)歷畫(huà)圖的過(guò)程,認(rèn)識(shí)三角形的高、中線與角平分線;2、會(huì)畫(huà)三角形的高、中線與角平分線;3、了解三角形的三條高所在的直線,三條中線 , 三條角平分線分別交于一點(diǎn) .3 在觀察、操作、推理、歸納等探索過(guò)程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)

8、推理的習(xí)慣4 體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心重點(diǎn)難點(diǎn) 三角形的高、中線與角平分線是重點(diǎn);三角形的角平分線與角的平分線的區(qū)別,畫(huà)鈍角三角形的高是難點(diǎn). 教學(xué)過(guò)程一、導(dǎo)入新課我們已經(jīng)知道什么是三角形,也學(xué)過(guò)三角形的高。三角形的主要線段除高外,還有中線和角平分線值得我們研究。二、三角形的高請(qǐng)你在圖中畫(huà)出abc的一條高并說(shuō)說(shuō)你畫(huà)法。從 abc的頂點(diǎn) a 向它所對(duì)的邊bc所在的直線畫(huà)垂線,垂足為d,所得線段ad叫做 abc的邊 bc上的高,表示為 ad bc于點(diǎn) d。注意:高與垂線不同,高是線段,垂線是直線。請(qǐng)你再畫(huà)出這個(gè)三角形ab 、ac邊上的高,看看有什么發(fā)現(xiàn)?三角形的三條高相交

9、于一點(diǎn)。如果 abc是直角三角形、鈍角三角形,上面的結(jié)論還成立嗎?現(xiàn)在我們來(lái)畫(huà)鈍角三角形三邊上的高,如圖。dcbadcba顯然,上面的結(jié)論成立。請(qǐng)你畫(huà)一個(gè)直角三角形,再畫(huà)出它三邊上的高。上面的結(jié)論還成立。三、三角形的中線如圖,我們把連結(jié)abc的頂點(diǎn) a和它的對(duì)邊bc的中點(diǎn) d,所得線段 ad叫做 abc的邊 bc上的 中線 ,表示為 bd=dc 或 bd=dc 1/2bc 或 2bd=2dc=bc. 請(qǐng)你在圖中畫(huà)出abc的另兩條邊上的中線,看看有什么發(fā)現(xiàn)?三角的三條中線相交于一點(diǎn)。如果三角形是直角三角形、鈍角三角形,上面的結(jié)論還成立嗎?請(qǐng)畫(huà)圖回答。上面的結(jié)論還成立。四、三角形的角平分線如圖,畫(huà)

10、 a 的平分線 ad ,交 a所對(duì)的邊 bc于點(diǎn) d,所得線段ad叫做 abc的角平分線 , 表示為bad= cad或 bad= cad 1/2 bac或 2bad=2 cad bac 。思考:三角形的角平分線與角的平分線是一樣的嗎?三角形的角平分線是線段,而角的平分線是射線,是不一樣的。請(qǐng)你在圖中再畫(huà)出另兩個(gè)角的平分線,看看有什么發(fā)現(xiàn)?三角形三個(gè)角的平分線相交于一點(diǎn)。如果三角形是直角三角形、鈍角三角形,上面的結(jié)論還成立嗎?請(qǐng)畫(huà)圖回答。上面的結(jié)論還成立。想一想:三角形的三條高、三條中線、三條角平分線的交點(diǎn)有什么不同?三角形的三條中線的交點(diǎn)、三條角平分線的交點(diǎn)在三角形的內(nèi)部,而銳三角形的三條高的

11、交點(diǎn)在三角形的內(nèi)部,直角三角形三條高的交戰(zhàn)在角直角頂點(diǎn),鈍角三角形的三條高的交點(diǎn)在三角形的外部。五、課堂練習(xí)課本 5 頁(yè)練習(xí) 1、2 題。六、課堂小結(jié)1、三角形的高、中線、角平分線的概念和畫(huà)法。2、三角形的三條高、三條中線、三條角平分線及交點(diǎn)的位置規(guī)律。七作業(yè):課本 8 頁(yè) 3、4;【總結(jié)反思】:a b c o d e f 2 1dcba11.1.3三角形的穩(wěn)定性教學(xué)目標(biāo) 1、 知道三角形具有穩(wěn)定性,四邊形沒(méi)有穩(wěn)定性;2、 了解三角形的穩(wěn)定性在生產(chǎn)、生活中的應(yīng)用。3、在觀察、操作、推理、歸納等探索過(guò)程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推理的習(xí)慣 重點(diǎn)難點(diǎn) 三角形穩(wěn)定性及應(yīng)用。 教學(xué)過(guò)程

12、一、情景導(dǎo)入蓋房子時(shí),在窗框未安裝之前,木工師傅常常先在窗框上斜釘一根木條,為什么要這樣做呢?二、三角形的穩(wěn)定性實(shí)驗(yàn) 1、把三根木條用釘子釘成一個(gè)三角形木架,然后扭動(dòng)它,它的形狀會(huì)改變嗎?不會(huì)改變。2、把四根木條用釘子釘成一個(gè)四邊形木架,然后扭動(dòng)它,它的形狀會(huì)改變嗎?會(huì)改變。3、在四邊形的木架上再釘一根木條,將它的一對(duì)頂點(diǎn)連接起來(lái),然后扭動(dòng)它,它的形狀會(huì)改變嗎?不會(huì)改變。從上面的實(shí)驗(yàn)中,你能得出什么結(jié)論?三角形具有穩(wěn)定性,而四邊形不具有穩(wěn)定性。三、三角形穩(wěn)定性和四邊形不穩(wěn)定的應(yīng)用三角形具有穩(wěn)定性固然好,四邊形不具有穩(wěn)定性也未必不好,它們?cè)谏a(chǎn)和生活中都有廣泛的應(yīng)用。如:鋼架橋、 屋頂鋼架和起重

13、機(jī)都是利用三角形的穩(wěn)定性,活動(dòng)掛架則是利用四邊形的不穩(wěn)定性。你還能舉出一些例子嗎?四、課堂練習(xí)1、下列圖形中具有穩(wěn)定性的是()a正方形 b長(zhǎng)方形 c直角三角形 d平行四邊形2、要使下列木架穩(wěn)定各至少需要多少根木棍?(2)3、課本 7 頁(yè)練習(xí)。五作業(yè) :8 頁(yè) 5;9 頁(yè) 10題?!究偨Y(jié)反思】:11.2.1三角形的內(nèi)角 教學(xué)目標(biāo) 1、掌握三角形內(nèi)角和定理。2、在觀察、操作、推理、歸納等探索過(guò)程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推理的習(xí)慣3、體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心 重點(diǎn)難點(diǎn) 三角形內(nèi)角和定理是重點(diǎn);三角形內(nèi)角和定理的證明是難點(diǎn)。 教學(xué)過(guò)程 一、導(dǎo)入新課我們?cè)谛W(xué)就

14、知道三角形內(nèi)角和等于1800,這個(gè)結(jié)論是通過(guò)實(shí)驗(yàn)得到的,這個(gè)命題是不是真命題還需要證明,怎樣證明呢?二、三角形內(nèi)角和的證明回顧我們小學(xué)做過(guò)的實(shí)驗(yàn),你是怎樣操作的?把一個(gè)三角形的兩個(gè)角剪下拼在第三個(gè)角的頂點(diǎn)處,用量角器量出bcd的度數(shù),可得到a+b+acb=1800。 投影 1 圖 1 想一想,還可以怎樣拼?剪下 a,按圖( 2)拼在一起,可得到a+b+acb=1800。圖 2 把b和c剪下按圖( 3)拼在一起,可得到a+b+acb=1800。如果把上面移動(dòng)的角在圖上進(jìn)行轉(zhuǎn)移,由圖1 你能想到證明三角形內(nèi)角和等于1800的方法嗎?已知 abc ,求證: a+b+c=1800。證明一過(guò)點(diǎn) c作 c

15、m ab ,則 a=acm , b=dcm ,又 acb+ acm+ dcm=1800 a+b+acb=1800。即:三角形的內(nèi)角和等于1800。由圖 2、圖 3 你又能想到什么證明方法?請(qǐng)說(shuō)說(shuō)證明過(guò)程。三、 例題例如圖,c島在 a 島的北偏東 500方向,b 島在 a島的北偏東800方向,c島在 b島的北偏西400方向,從 c 島看 a、b 兩島的視角 acb是多少度?分析:怎樣能求出acb的度數(shù)?根據(jù)三角形內(nèi)角和定理,只需求出cab和 cba的度數(shù)即可。cab等于多少度?怎樣求cba的度數(shù)?解: cba= bad-cad=800-500=300ad be bad+ abe=1800 abe

16、=1800-bad=1800-800=1000 abc= abe-ebc=1000-400=600 acb=1800-abc-cab=1800-600-300=900答:從 c 島看 ab兩島的視角 acb=1800是 900。四、課堂練習(xí)課本 13 頁(yè) 1、2 題。五作業(yè) :16 頁(yè) 1、3、4;【總結(jié)反思】:11.2.2三角形的外角 教學(xué)目標(biāo) 1、理解三角形的外角;2、掌握三角形外角的性質(zhì),能利用三角形外角的性質(zhì)解決問(wèn)題。 重點(diǎn)難點(diǎn) 三角形的外角和三角形外角的性質(zhì)是重點(diǎn);理解三角形的外角是難點(diǎn)。 教學(xué)過(guò)程 一、導(dǎo)入新課投影 1如圖, abc的三個(gè)內(nèi)角是什么?它們有什么關(guān)系?是 a、 b、

17、c,它們的和是1800。若延長(zhǎng) bc至 d,則 acd是什么角?這個(gè)角與abc的三個(gè)內(nèi)角有什么關(guān)系?二、三角形外角的概念acd叫做 abc的外角。也就是,三角形一邊與另一邊的延長(zhǎng)線組成的角,叫做三角形的外角 。想一想,三角形的外角共有幾個(gè)?共有六個(gè)。注意:每個(gè)頂點(diǎn)處有兩個(gè)外角,它們是對(duì)頂角。研究與三角形外角有關(guān)的問(wèn)題時(shí),通常每個(gè)頂點(diǎn)處取一個(gè)外角. 三、三角形外角的性質(zhì)容易知道,三角形的外角acd與相鄰的內(nèi)角 acb是鄰補(bǔ)角,那與另外兩個(gè)角有怎樣的數(shù)量關(guān)系呢?投影2如圖,這是我們證明三角形內(nèi)角和定理時(shí)畫(huà)的輔助線,你能就此圖說(shuō)明acd與 a、 b的關(guān)系嗎?ce ab, a=1, b=2 又 acd

18、= 1+2 acd= a+b 你能用文字語(yǔ)言敘述這個(gè)結(jié)論嗎?三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角之和。由加數(shù)與和的關(guān)系你還能知道什么?三角形的一個(gè)外角大于與它不相鄰的任何一個(gè)內(nèi)角。即aacd,bacd。四、例題投影 3例如圖, 1、 2、 3 是三角形 abc的三個(gè)外角,它們的和是多少?分析: 1 與 bac 、 2 與 abc 、3 與 acb有什么關(guān)系?bac 、abc 、 acb有什么關(guān)系?解: 1+bac=1800, 2+abc=1800, 3+acb=1800, 1+bac+ 2+abc+ 3+acb=5400又bac+ abc+ acb=1800 1+2+3=3600。你能用語(yǔ)

19、言敘述本例的結(jié)論嗎?三角形外角的和等于3600。五、課堂練習(xí)課本 15 頁(yè)練習(xí);六、課堂小結(jié)1、什么是三角形外角?2、三角形的外角有哪些性質(zhì)?七、作業(yè):課本 12頁(yè) 5、6;1131 多邊形 教學(xué)目標(biāo) 1、 了解多邊形及有關(guān)概念,理解正多邊形的概念2、 區(qū)別凸多邊形與凹多邊形 重點(diǎn)難點(diǎn) 多邊形及有關(guān)概念、正多邊形的概念是重點(diǎn);區(qū)別凸多邊形與凹多邊形是難點(diǎn)。 教學(xué)過(guò)程 一、情景導(dǎo)入 投 影1看 下 面 的 圖 片 , 你 能 從 中 找 出 由 一 些 線 段 圍 成的 圖 形 嗎 ?二、多邊形及有關(guān)概念這些圖形有什么特點(diǎn)?由幾條線段組成;它們不在同一條直線上;首尾順次相接這種在平面內(nèi),由一些不

20、在同一條直線上的線段首尾順次相接組成的圖形叫做多邊形 。多邊形按組成它的線段的條數(shù)分成三角形、四邊形、五邊形、n 邊形。這就是說(shuō),一個(gè)多邊形由幾條線段組成,就叫做幾邊形,三角形是最簡(jiǎn)單的多邊形。與三角形類似地,多邊形相鄰兩邊組成的角叫做多邊形的內(nèi)角 ,如圖中的 a 、 b、 c、 d、 e。多邊形的邊與它的鄰邊的延長(zhǎng)線組成的角叫做多邊形的外角 如圖中的 1 是五邊形 abcde 的一個(gè)外角。 投影 2 連接多邊形的不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線四邊形有幾條對(duì)角線?五邊形有幾條對(duì)角線?畫(huà)圖看看。你能猜想 n 邊形有多少條對(duì)角線嗎?說(shuō)說(shuō)你的想法。n 邊形有 1/2n (n3)條對(duì)角線。

21、因?yàn)閺膎 邊形的一個(gè)頂點(diǎn)可以引n3 條對(duì)角線, n 個(gè)頂點(diǎn)共引n(n3)條對(duì)角線, 又由于連接任意兩個(gè)頂點(diǎn)的兩條對(duì)角線是相同的,所以, n 邊形有 1/2n(n3)條對(duì)角線。三、凸多邊形和凹多邊形 投影 3 如圖,下面的兩個(gè)多邊形有什么不同?在圖( 1)中,畫(huà)出四邊形abcd的任何一條邊所在的直線,整個(gè)圖形都在這條直線的同一側(cè),這樣的四邊形叫做凸四邊形,這樣的多邊形稱為凸多邊形 ;而圖( 2)就不滿足上述凸多邊形的特征,因?yàn)槲覀儺?huà)bd所在直線,整個(gè)多邊形不都在這條直線的同一側(cè),我們稱它為凹多邊形 。注意:今后我們討論的多邊形指的都是凸多邊形四、正多邊形的概念我們知道,等邊三角形、正方形的各個(gè)角

22、都相等,各條邊都相等,像這樣各個(gè)角都相等,各條邊都相等的多邊形叫做 正多邊形 。 投影 4 下面是正多邊形的一些例子。五、課堂練習(xí)課本 21 頁(yè)練習(xí) 1、2。3、有五個(gè)人在告別的時(shí)候相互各握了一次手,他們共握了多少次手?你能找到一個(gè)幾何模型來(lái)說(shuō)明嗎?六、課堂小結(jié) 1 、多邊形及有關(guān)概念。2、區(qū)別凸多邊形和凹多邊形。3、正多邊形的概念。4、n 邊形對(duì)角線有1/2n (n3)條。七、作業(yè):課本 24 頁(yè) 1?!究偨Y(jié)反思】:1132 多邊形的內(nèi)角和 教學(xué)目標(biāo) 1、 了解多邊形的內(nèi)角、外角等概念;2、 能通過(guò)不同方法探索多邊形的內(nèi)角和與外角和公式,并會(huì)應(yīng)用它們進(jìn)行有關(guān)計(jì)算 重點(diǎn)難點(diǎn) 多邊形的內(nèi)角和與多

23、邊形的外角和公式是重點(diǎn);多邊形的內(nèi)角和定理的推導(dǎo)是難點(diǎn)。 教學(xué)過(guò)程 一、復(fù)習(xí)導(dǎo)入我們已經(jīng)證明了三角形的內(nèi)角和為180,在小學(xué)我們用量角器量過(guò)四邊形的內(nèi)角的度數(shù),知道四邊形內(nèi)角的和為360,現(xiàn)在你能利用三角形的內(nèi)角和定理證明嗎?二、多邊形的內(nèi)角和投影1如圖,從四邊形的一個(gè)頂點(diǎn)出發(fā)可以引幾條對(duì)角線?它們將四邊形分成幾個(gè)三角形?那么四邊形的內(nèi)角和等于多少度?a bcd可以引一條對(duì)角線;它將四邊形分成兩個(gè)三角形;因此,四邊形的內(nèi)角和=abd的內(nèi)角和 +bdc的內(nèi)角和 =2180=360。類似地,你能知道五邊形、六邊形 n 邊形的內(nèi)角和是多少度嗎?投影 2觀察下面的圖形,填空:五邊形六邊形從五邊形一個(gè)頂

24、點(diǎn)出發(fā)可以引對(duì)角線,它們將五邊形分成三角形,五邊形的內(nèi)角和等于;從六邊形一個(gè)頂點(diǎn)出發(fā)可以引對(duì)角線,它們將六邊形分成三角形,六邊形的內(nèi)角和等于;投影 3從 n 邊形一個(gè)頂點(diǎn)出發(fā),可以引對(duì)角線,它們將n 邊形分成三角形, n 邊形的內(nèi)角和等于。n 邊形的內(nèi)角和等于(n 一 2) 180從上面的討論我們知道, 求 n 邊形的內(nèi)角和可以將n 邊形分成若干個(gè)三角形來(lái)求?,F(xiàn)在以五邊形為例,你還有其它的分法嗎?分法一投影 3如圖 1,在五邊形 abcde 內(nèi)任取一點(diǎn)o,連結(jié) oa 、ob 、oc 、od 、oe ,則得五個(gè)三角形。五邊形的內(nèi)角和為5180一 2180( 52) 180=540。12345a

25、bcdeo1234a bcdeo圖 1 圖 2 分法二投影 4如圖 2,在邊 ab 上取一點(diǎn) o ,連 oe 、od 、oc ,則可以( 51)個(gè)三角形。五邊形的內(nèi)角和為(51) 180一 180( 52) 180如果把五邊形換成n 邊形,用同樣的方法可以得到n 邊形內(nèi)角和( n 一 2) 180三、例題投影 6例 1 如果一個(gè)四邊形的一組對(duì)角互補(bǔ),那么另一組對(duì)角有什么關(guān)系?如圖,已知四邊形abcd中, a c180,求 b 與d的關(guān)系分析: a、 b、 c、 d有什么關(guān)系?解: a+b+c+ d= (42) 180=360又 a c180a b c d b d= 360( a c ) =18

26、0這就是說(shuō),如果四邊形一組對(duì)角互補(bǔ),那么另一組對(duì)角也互補(bǔ)投影 7例 2 如圖,在六邊形的每個(gè)頂點(diǎn)處各取一個(gè)外角,這些外角的和叫做六邊形的外角和六邊形的外角和等于多少?如圖,已知 1, 2, 3, 4, 5,6 分別為六邊形abcdef 的外角,求 1+2+3+4+5+6 的值分析:多邊形的一個(gè)外角同與它相鄰的內(nèi)角有什么關(guān)系?六邊形的內(nèi)角和是多少度?1234a bcdef56解: 1+baf=180 2+abc=180 3+bad=180 4+cde=180 5+def=180 6+efa=180 1+baf+ 2+abc+ 3+bad+ 4+cde+ 5+def+ 6+efa=6 180又 1

27、+2+3+4+5+6=4180 baf+ abc+ bad+ cde+ def+ efa=6 180-4 180=360這就是說(shuō),六邊形形的外角和為360。如果把六邊形換成n 邊形可以得到同樣的結(jié)果:n 邊形的外角和等于360。對(duì)此,我們也可以這樣來(lái)理解。投影 8如圖,從多邊形的一個(gè)頂點(diǎn)a 出發(fā),沿多邊形各邊走過(guò)各頂點(diǎn),再回到a 點(diǎn),然后轉(zhuǎn)向出發(fā)時(shí)的方向,在行程中所轉(zhuǎn)的各個(gè)角的和就是多邊形的外角和,由于走了一周,所得的各個(gè)角的和等于一個(gè)周角,所以多邊形的外角和等于360四、課堂練習(xí)課本 24 頁(yè) 1、2、3 題。五、課堂小結(jié)n 邊形的內(nèi)角和是多少度?n 邊形的外角和是多少度?六、作業(yè):課本 2

28、4 頁(yè) 2、3;【總結(jié)反思】:本章小結(jié)一、知識(shí)結(jié)構(gòu)三角形與三角形有關(guān)的線段三角形的內(nèi)角和三角形的外角和高中線角平分線多邊形的內(nèi)角和多邊形的外角和二、回顧與思考1、什么是三角形?什么是多邊形?什么是正多邊形?三角形是不是多邊形?2、什么是三角形的高、中線、角平分線?什么是對(duì)角線?三角形有對(duì)角線嗎?n 邊形的的對(duì)角線有多少條?3、三角形的三條高,三條中線,三條角平分線各有什么特點(diǎn)?4、三角形的內(nèi)角和是多少?n 邊形的內(nèi)角和是多少?你能用三角形的內(nèi)角和說(shuō)明n 邊形的內(nèi)角和嗎?5、三角形的外角和是多少?n 邊形的外角和是多少?你能說(shuō)明為什么多邊形的外角和與邊數(shù)無(wú)關(guān)嗎?6、怎樣才算是平面鑲嵌?平面鑲嵌的

29、條件是什么?能單獨(dú)進(jìn)行平面鑲嵌的多邊形有哪些?你能舉一個(gè)幾個(gè)多邊形進(jìn)行平面鑲嵌的例子嗎?三、例題導(dǎo)引例 1 如圖,在 abc中, a b c=3 45,bd 、ce分別是邊 ac 、ab上的高, bd 、ce相交于點(diǎn)h,求 bhc的度數(shù)。例 2 如圖,把 abc沿 de折疊,當(dāng)點(diǎn)a落在四邊形bcde 內(nèi)部時(shí),探索 a與 1 2 有什么數(shù)量關(guān)系?并說(shuō)明理由。例 3 如圖所示 , 在abc中, abc的內(nèi)角平分線與外角平分線交于點(diǎn)p, 試說(shuō)明 p1/2 a. 四、鞏固練習(xí) 課本 2829 頁(yè)復(fù)習(xí)題 7(第 3 題可不做) . 【總結(jié)反思】:1 2 abcdea b c d e h (2)pcba第

30、十二章全等三角形單元要點(diǎn)分析教學(xué)內(nèi)容本章的主要內(nèi)容是全等三角形主要學(xué)習(xí)全等三角形的性質(zhì)以及探索判定三角形全等的方法,并學(xué)會(huì)怎樣應(yīng)用全等三角形進(jìn)行證明,本章劃分為三個(gè)小節(jié),第一節(jié)學(xué)習(xí)三角形全等的概念、性質(zhì);第二節(jié)學(xué)習(xí)三角形全等的判定方法和直角三角形全等的特殊判定方法;第三節(jié)利用三角形全等證明角的平分線的性質(zhì),會(huì)利用角的平分線的性質(zhì)進(jìn)行證明教材分析教材力求創(chuàng)設(shè)現(xiàn)實(shí)、有趣的問(wèn)題情境,使學(xué)生經(jīng)歷從現(xiàn)實(shí)活動(dòng)中抽象出幾何模型和運(yùn)用所學(xué)內(nèi)容解決實(shí)際問(wèn)題的過(guò)程在內(nèi)容呈現(xiàn)上,把研究三角形全等條件的重點(diǎn)放在第一個(gè)條件上,通過(guò)“邊邊邊”條件探索什么是三角形的判定,如何判定,怎樣進(jìn)行推理論證,怎樣正確地表達(dá)證明過(guò)程學(xué)

31、生開(kāi)始學(xué)習(xí)三角形判定定理時(shí)的困難在于定理的證明,而這些推理證明并不要求學(xué)生掌握為了突出判定方法這條主渠道,教材都作為基本事實(shí)提出來(lái),在畫(huà)圖、實(shí)驗(yàn)中讓學(xué)生知道它們的正確性就可以了在“角的平分線的性質(zhì)”一節(jié)中的兩個(gè)互逆定理,只要求學(xué)生了解其條件與結(jié)論之間的關(guān)系,不必介紹互逆命題、互逆定理等內(nèi)容,這將在“勾股定理”中介紹重、難點(diǎn)與關(guān)鍵 1 重點(diǎn):使學(xué)生理解證明的基本過(guò)程,掌握用綜合法證明的格式 2 難點(diǎn):領(lǐng)會(huì)證明的分析思路,學(xué)會(huì)運(yùn)用綜合法證明的格式 3 關(guān)鍵:突出三角形全等的判定方法這條主線,淡化對(duì)定理的證明教學(xué)建議 1注意使學(xué)生經(jīng)歷探索三角形性質(zhì)及三角形全等的判定的過(guò)程在教學(xué)中鼓勵(lì)學(xué)生觀察、操作、

32、推理,運(yùn)用多種方式探索三角形有關(guān)性質(zhì) 2注重創(chuàng)設(shè)具有現(xiàn)實(shí)性、趣味性和挑戰(zhàn)性的情境,體現(xiàn)三角形的廣泛應(yīng)用 3注意直觀操作與說(shuō)理的結(jié)合,逐步培養(yǎng)學(xué)生有條理的思考和表達(dá)課時(shí)劃分本單元共分成9 課時(shí) 121 全等三角形 1課時(shí) 122 三角形全等的性質(zhì) 5課時(shí) 123 角的平分線的性質(zhì) 2課時(shí)復(fù)習(xí)與交流 1課時(shí)12.1 全等三角形教學(xué)內(nèi)容本節(jié)課主要介紹全等三角形的概念和性質(zhì)教學(xué)目標(biāo) 1領(lǐng)會(huì)全等三角形對(duì)應(yīng)邊和對(duì)應(yīng)角相等的有關(guān)概念 2經(jīng)歷探索全等三角形性質(zhì)的過(guò)程,能在全等三角形中正確找出對(duì)應(yīng)邊、對(duì)應(yīng)角 3培養(yǎng)觀察、操作、分析能力,體會(huì)全等三角形的應(yīng)用價(jià)值重、難點(diǎn)與關(guān)鍵 1重點(diǎn):會(huì)確定全等三角形的對(duì)應(yīng)元素

33、2難點(diǎn):掌握找對(duì)應(yīng)邊、對(duì)應(yīng)角的方法 3關(guān)鍵:找對(duì)應(yīng)邊、對(duì)應(yīng)角有下面兩種方法:(1)全等三角形對(duì)應(yīng)角所對(duì)的邊是對(duì)應(yīng)邊,兩個(gè)對(duì)應(yīng)角所夾的邊是對(duì)應(yīng)邊; (2)對(duì)應(yīng)邊所對(duì)的角是對(duì)應(yīng)角,?兩條對(duì)應(yīng)邊所夾的角是對(duì)應(yīng)角教具準(zhǔn)備四張大小一樣的紙片、直尺、剪刀教學(xué)方法采用“直觀感悟”的教學(xué)方法,讓學(xué)生自己舉出形狀、大小相同的實(shí)例,加深認(rèn)識(shí)教學(xué)過(guò)程一、動(dòng)手操作,導(dǎo)入課題 1先在其中一張紙上畫(huà)出任意一個(gè)多邊形,再用剪刀剪下,?思考得到的圖形有何特點(diǎn)? 2重新在一張紙板上畫(huà)出任意一個(gè)三角形,再用剪刀剪下,?思考得到的圖形有何特點(diǎn)?【學(xué)生活動(dòng)】動(dòng)手操作、用腦思考、與同伴討論,得出結(jié)論【教師活動(dòng)】指導(dǎo)學(xué)生用剪刀剪出重疊的

34、兩個(gè)多邊形和三角形學(xué)生在操作過(guò)程中,教師要讓學(xué)生事先在紙上畫(huà)出三角形,然后固定重疊的兩張紙,注意整個(gè)過(guò)程要細(xì)心【互動(dòng)交流】剪出的多邊形和三角形,可以看出:形狀、大小相同,能夠完全重合這樣的兩個(gè)圖形叫做全等形,用“”表示概念:能夠完全重合的兩個(gè)三角形叫做全等三角形【教師活動(dòng)】在紙版上任意剪下一個(gè)三角形,要求學(xué)生手拿一個(gè)三角形,做如下運(yùn)動(dòng):平移、翻折、旋轉(zhuǎn),觀察其運(yùn)動(dòng)前后的三角形會(huì)全等嗎?【學(xué)生活動(dòng)】動(dòng)手操作,實(shí)踐感知,得出結(jié)論:兩個(gè)三角形全等【教師活動(dòng)】要求學(xué)生用字母表示出每個(gè)剪下的三角形,同時(shí)互相指出每個(gè)三角形的頂點(diǎn)、三個(gè)角、三條邊、每條邊的邊角、每個(gè)角的對(duì)邊【學(xué)生活動(dòng)】把兩個(gè)三角形按上述要求

35、標(biāo)上字母,并任意放置,與同桌交流:(1)何時(shí)能完全重在一起?( 2)此時(shí)它們的頂點(diǎn)、邊、角有何特點(diǎn)?【交流討論】通過(guò)同桌交流,實(shí)驗(yàn)得出下面結(jié)論: 1任意放置時(shí),并不一定完全重合,?只有當(dāng)把相同的角旋轉(zhuǎn)到一起時(shí)才能完全重合 2這時(shí)它們的三個(gè)頂點(diǎn)、三條邊和三個(gè)內(nèi)角分別重合了 3完全重合說(shuō)明三條邊對(duì)應(yīng)相等,三個(gè)內(nèi)角對(duì)應(yīng)相等,?對(duì)應(yīng)頂點(diǎn)在相對(duì)應(yīng)的位置【教師活動(dòng)】根據(jù)學(xué)生交流的情況,給予補(bǔ)充和語(yǔ)言上的規(guī)范 1概念:把兩個(gè)全等的三角形重合到一起,重合的頂點(diǎn)叫做對(duì)應(yīng)頂點(diǎn),?重合的邊叫做對(duì)應(yīng)邊,重合的角叫做對(duì)應(yīng)角2證兩個(gè)三角形全等時(shí),通常把表示對(duì)應(yīng)頂點(diǎn)的字母寫(xiě)在對(duì)應(yīng)的位置上,?如果本圖 1112abc和 db

36、c全等,點(diǎn) a和點(diǎn) d,點(diǎn) b 和點(diǎn) b,點(diǎn) c和點(diǎn) c 是對(duì)應(yīng)頂點(diǎn), ?記作 abc dbc 【問(wèn)題提出】課本圖1111 中, abc def ,對(duì)應(yīng)邊有什么關(guān)系?對(duì)應(yīng)角呢?【學(xué)生活動(dòng)】經(jīng)過(guò)觀察得到下面性質(zhì): 1全等三角形對(duì)應(yīng)邊相等; 2全等三角形對(duì)應(yīng)角相等二、隨堂練習(xí),鞏固深化課本 p37 練習(xí)【探研時(shí)空】1如圖 1 所示, acf dbe , e=f,若 ad=20cm ,bc=8cm ,你能求出線段ab的長(zhǎng)嗎?與同伴交流 (ab=6)2如圖 2 所示, abc aec ,b=30,acb=85 ,求出 aec各內(nèi)角的度數(shù) ?( aec=30 ,eac=65 , eca=85 )三、課堂

37、總結(jié),發(fā)展?jié)撃?1什么叫做全等三角形? 2全等三角形具有哪些性質(zhì)?四、布置作業(yè),專題突破課本 p43 習(xí)題 121 第 1,2,3,4 題疑難解析由于兩個(gè)三角形的位置關(guān)系不同,在找對(duì)應(yīng)邊、對(duì)應(yīng)角時(shí),可以針對(duì)兩個(gè)三角形不同的位置關(guān)系,尋找對(duì)應(yīng)邊、角的規(guī)律: (1)有公共邊的,?公共邊一定是對(duì)應(yīng)邊; (2)有公共角的,公共角一定是對(duì)應(yīng)角;(3)有對(duì)頂角的, 對(duì)頂角一定是對(duì)應(yīng)角;兩個(gè)全等三角形中一對(duì)最長(zhǎng)的邊(或最大的角) 是對(duì)應(yīng)邊(或角),一對(duì)最短的邊(或最小的角)是對(duì)應(yīng)邊(或角)12.2.1三角形全等的判定(sss )教學(xué)內(nèi)容本節(jié)課主要內(nèi)容是探索三角形全等的條件(sss ) ,?及利用全等三角形進(jìn)

38、行證明教學(xué)目標(biāo) 1 了解三角形的穩(wěn)定性,會(huì)應(yīng)用“邊邊邊”判定兩個(gè)三角形全等 2 經(jīng)歷探索“邊邊邊”判定全等三角形的過(guò)程,解決簡(jiǎn)單的問(wèn)題 3 培養(yǎng)有條理的思考和表達(dá)能力,形成良好的合作意識(shí)重、難點(diǎn)1重點(diǎn):掌握“邊邊邊”判定兩個(gè)三角形全等的方法 2難點(diǎn):理解證明的基本過(guò)程,學(xué)會(huì)綜合分析法教具準(zhǔn)備一塊形狀如圖1 所示的硬紙片,直尺,圓規(guī) (1) (2) 教學(xué)方法采用“操作實(shí)驗(yàn)”的教學(xué)方法,讓學(xué)生親自動(dòng)手,形成直觀形象教學(xué)過(guò)程一、設(shè)疑求解,操作感知【教師活動(dòng)】(出示教具)問(wèn)題提出:一塊三角形的玻璃損壞后,只剩下如圖2 所示的殘片, ?你對(duì)圖中的殘片作哪些測(cè)量,就可以割取符合規(guī)格的三角形玻璃,與同伴交流

39、【學(xué)生活動(dòng)】觀察,思考,回答教師的問(wèn)題方法如下:可以將圖1?的玻璃碎片放在一塊紙板上,然后用直尺和鉛筆或水筆畫(huà)出一塊完整的三角形如圖2,?剪下模板就可去割玻璃了【理論認(rèn)知】如果 abc abc,那么它們的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等?反之, ?如果 abc與 abc滿足三條邊對(duì)應(yīng)相等,三個(gè)角對(duì)應(yīng)相等,即ab=a b, bc=b c , ca=c a , a=a, b=b,c=c這六個(gè)條件, 就能保證 abc abc,從剛才的實(shí)踐我們可以發(fā)現(xiàn):?只要兩個(gè)三角形三條對(duì)應(yīng)邊相等,就可以保證這兩塊三角形全等信不信?【作圖驗(yàn)證】(用直尺和圓規(guī))先任意畫(huà)出一個(gè)abc ,再畫(huà)一個(gè) abc,使 ab=ab ,b c

40、=bc ,ca=ca 把畫(huà)出的 abc剪下來(lái),放在abc上,它們能完全重合嗎?(即全等嗎)【學(xué)生活動(dòng)】拿出直尺和圓規(guī)按上面的要求作圖,并驗(yàn)證(如課本圖112-2 所示)畫(huà)一個(gè) abc,使 a b=ab , ac=ac ,bc=bc : 1畫(huà)線段取 bc=bc ; 2分別以 b、c為圓心,線段ab、ac為半徑畫(huà)弧,兩弧交于點(diǎn)a; 3連接線段 ab、 ac【教師活動(dòng)】巡視、指導(dǎo),引入課題:“上述的生活實(shí)例和尺規(guī)作圖的結(jié)果反映了什么規(guī)律?”【學(xué)生活動(dòng)】在思考、實(shí)踐的基礎(chǔ)上可以歸納出下面判定兩個(gè)三角形全等的定理(1)判定方法:三邊對(duì)應(yīng)相等的兩個(gè)三角形全等(簡(jiǎn)寫(xiě)成“邊邊邊”或“sss ” ) (2)判斷

41、兩個(gè)三角形全等的推理過(guò)程,叫做證明三角形全等【評(píng)析】通過(guò)學(xué)生全過(guò)程的畫(huà)圖、觀察、比較、交流等,逐步探索出最后的結(jié)論邊邊邊,在這個(gè)過(guò)程中,學(xué)生不僅得到了兩個(gè)三角形全等的條件,同時(shí)增強(qiáng)了數(shù)學(xué)體驗(yàn)二、范例點(diǎn)擊,應(yīng)用所學(xué)【例 1】如課本圖 1123 所示, abc是一個(gè)鋼架, ab=ac ,ad是連接點(diǎn) a與 bc中點(diǎn) d的支架,求證 abd acd (教師板書(shū))【教師活動(dòng)】分析例1,分析:要證明abd acd ,可看這兩個(gè)三角形的三條邊是否對(duì)應(yīng)相等證明: d是 bc的中點(diǎn),bd=cd 在 abd和 acd中,.abacbdcdadad abd acd (sss ) 【評(píng)析】符號(hào)“”表示“因?yàn)椤保?“

42、”表示“所以” ;從例 1 可以看出, ?證明是由題設(shè)(已知)出發(fā),經(jīng)過(guò)一步步的推理,最后推出結(jié)論(求證)正確的過(guò)程書(shū)寫(xiě)中注意對(duì)應(yīng)頂點(diǎn)要寫(xiě)在同一個(gè)位置上,哪個(gè)三角形先寫(xiě),哪個(gè)三角形的邊就先寫(xiě)三、實(shí)踐應(yīng)用,合作學(xué)習(xí)【問(wèn)題思考】已知 ac=fe ,bc=de ,點(diǎn) a、d、b、f在直線上, ad=fb (如圖所示) ,要用“邊邊邊” 證明 abc fde ,除了已知中的ac=fe ,bc=de 以外,還應(yīng)該有什么條件?怎樣才能得到這個(gè)條件?【教師活動(dòng)】提出問(wèn)題,巡視、引導(dǎo)學(xué)生,并請(qǐng)學(xué)生說(shuō)說(shuō)自己的想法【學(xué)生活動(dòng)】先獨(dú)立思考后,再發(fā)言:“還應(yīng)該有ab=fd ,只要 ad=fb兩邊都加上 db即可得到

43、ab=fd ”【教學(xué)形式】先獨(dú)立思考,再合作交流,師生互動(dòng)四、隨堂練習(xí),鞏固深化課本 p37 練習(xí)【探研時(shí)空】如圖所示, ab=df ,ac=de ,be=cf ,bc 與 ef 相等嗎? ?你能找到一對(duì)全等三角形嗎?說(shuō)明你的理由 (bc=ef , abc dfe )五、課堂總結(jié),發(fā)展?jié)撃?1全等三角形性質(zhì)是什么? 2正確地判斷出全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角,?利用全等三角形處理問(wèn)題的基礎(chǔ),你是怎樣掌握判斷對(duì)應(yīng)邊、對(duì)應(yīng)角的方法? 3 “邊邊邊”判定法告訴我們什么呢??(答:只要一個(gè)三角形三邊長(zhǎng)度確定了,則這個(gè)三角形的形狀大小就完全確定了,這就是三角形的穩(wěn)定性)六、布置作業(yè),專題突破 1課本 p1

44、5 習(xí)題 112 第 1,2 題 2選用課時(shí)作業(yè)設(shè)計(jì)七、板書(shū)設(shè)計(jì)把黑板平均分成三份,左邊部分板書(shū)“邊邊邊”判定法,中間部分板書(shū)例題,右邊部分板書(shū)練習(xí)12.2.2 三角形全等判定(sas )教學(xué)內(nèi)容本節(jié)課主要內(nèi)容是探索三角形全等的條件(sas ) ,及利用全等三角形證明教學(xué)目標(biāo)1領(lǐng)會(huì)“邊角邊”判定兩個(gè)三角形的方法2 經(jīng)歷探究三角形全等的判定方法的過(guò)程,學(xué)會(huì)解決簡(jiǎn)單的推理問(wèn)題3培養(yǎng)合情推理能力,感悟三角形全等的應(yīng)用價(jià)值重、難點(diǎn)1重點(diǎn):會(huì)用“邊角邊”證明兩個(gè)三角形全等 2難點(diǎn):應(yīng)用結(jié)合法的格式表達(dá)問(wèn)題教具準(zhǔn)備投影儀、直尺、圓規(guī)教學(xué)方法采用“操作實(shí)驗(yàn)”的教學(xué)方法,讓學(xué)生有一個(gè)直觀的感受教學(xué)過(guò)程一、回顧

45、交流,操作分析【動(dòng)手畫(huà)圖】【投影】作一個(gè)角等于已知角【學(xué)生活動(dòng)】動(dòng)手用直尺、圓規(guī)畫(huà)圖已知: aob 求作: a1o1b1,使 a1o1b1=aob 【作法】(1)作射線o1a1; (2)以點(diǎn) o為圓心,以適當(dāng)長(zhǎng)為半徑畫(huà)弧,交oa? 于點(diǎn) c,?交 ob于點(diǎn) d;(3)以點(diǎn) o1為圓心,以oc長(zhǎng)為半徑畫(huà)弧,交o1a1于點(diǎn) c1; (4)以點(diǎn) c1為圓心,以cd? 長(zhǎng)為半徑畫(huà)弧,交前面的弧于點(diǎn)d1; (5)過(guò)點(diǎn) d1作射線 o1b1, a1o1b1就是所求的角【導(dǎo)入課題】教師敘述:請(qǐng)同學(xué)們連接cd 、c1d1,回憶作圖過(guò)程,分析cod 和 c1o1d1?中相等的條件【學(xué)生活動(dòng)】與同伴交流,發(fā)現(xiàn)下面

46、的相等量: od=o1d1,oc=o1c1, cod= c1o1d1, cod c1o1d1歸納出規(guī)律:兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等(簡(jiǎn)寫(xiě)成“邊角邊”或“sas? ” ) 【評(píng)析】通過(guò)讓學(xué)生回憶基本作圖,在作圖過(guò)程中體會(huì)相等的條件,在直觀的操作過(guò)程中發(fā)現(xiàn)問(wèn)題,獲得新知,使學(xué)生的知識(shí)承上啟下,開(kāi)拓思維,發(fā)展探究新知的能力【媒體使用】投影顯示作法【教學(xué)形式】操作感知,互動(dòng)交流,形成共識(shí)二、范例點(diǎn)擊,應(yīng)用新知【例 2】如課本圖 112-6 所示有一池塘,要測(cè)池塘兩側(cè)a、b的距離,可先在平地上取一個(gè)可以直接到達(dá) a和 b 的點(diǎn),連接ac并延長(zhǎng)到 d,使 cd=ca ,連接 bc并延長(zhǎng)到e,

47、?使 ce=cb ,連接 de ,那么量出de的長(zhǎng)就是 a、b 的距離,為什么?【教師活動(dòng)】操作投影儀,顯示例2,分析:如果能夠證明abc dec ,就可以得出ab=de 在 abc和 dec中, ca=cd ,cb=ce ,如果能得出1=2,abc和 dec? 就全等了證明:在 abc和 dec中12cacdcbce abc dec (sas )ab=de 想一想: 1=2 的依據(jù)是什么?(對(duì)頂角相等)ab=de 的依據(jù)是什么?(全等三角形對(duì)應(yīng)邊相等)【學(xué)生活動(dòng)】參與教師的講例之中,領(lǐng)悟“邊角邊”證明三角形全等的方法,學(xué)會(huì)分析推理和規(guī)范書(shū)寫(xiě)【媒體使用】投影顯示例2【教學(xué)形式】教師講例,學(xué)生接

48、受式學(xué)習(xí)但要積極參與【評(píng)析】證明分別屬于兩個(gè)三角形的線段相等或角相等的問(wèn)題,常常通過(guò)證明這兩個(gè)三角形全等來(lái)解決三、辨析理解,正確掌握【問(wèn)題探究】(投影顯示)我們知道,兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等,由“兩邊及其中一邊的對(duì)角對(duì)應(yīng)相等”的條件能判定兩個(gè)三角形全等嗎?為什么?【教師活動(dòng)】拿出教具進(jìn)行示范,讓學(xué)生直觀地感受到問(wèn)題的本質(zhì)操作教具:把一長(zhǎng)一短兩根細(xì)木棍的一端用螺釘鉸合在一起,?使長(zhǎng)木棍的另一端與射線bc的端點(diǎn) b重合,適當(dāng)調(diào)整好長(zhǎng)木棍與射線bc 所成的角后,固定住長(zhǎng)木棍,把短木棍擺起來(lái)(課本圖112-7) ,出現(xiàn)一個(gè)現(xiàn)象: abc與 abd滿足兩邊及其中一邊對(duì)角相等的條件,但ab

49、c與 abd不全等這說(shuō)明,?有兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等的兩個(gè)三角形不一定全等【學(xué)生活動(dòng)】 觀察教師操作教具、發(fā)現(xiàn)問(wèn)題、辨析理解,動(dòng)手用直尺和圓規(guī)實(shí)驗(yàn)一次,做法如下:(如圖 1 所示)(1)畫(huà) abt ; (2)以 a為圓心,以適當(dāng)長(zhǎng)為半徑,畫(huà)弧,交bt于 c、c ; (3)?連線 ac ,ac ,abc與 abc 不全等【形成共識(shí)】“邊邊角”不能作為判定兩個(gè)三角形全等的條件【教學(xué)形式】觀察、操作、感知,互動(dòng)交流四、隨堂練習(xí),鞏固深化課本 p39 練習(xí)第 1、2 題【探研時(shí)空】一位經(jīng)歷過(guò)戰(zhàn)爭(zhēng)的老人講述了這樣一個(gè)故事:(如圖 2 所示)在一次戰(zhàn)役中,我軍陣地與敵軍碉堡隔河相望為了炸掉這個(gè)碉堡,

50、需要知道碉堡與我軍陣地的距離在不能過(guò)河測(cè)量又沒(méi)有任何測(cè)量工具的情況下,一個(gè)戰(zhàn)士想出來(lái)這樣一個(gè)辦法,他面向碉堡的方向站好,然后調(diào)整帽子,使視線通過(guò)帽檐正好落在碉堡的底部然后,他轉(zhuǎn)過(guò)一個(gè)角度,保持剛才的姿態(tài),這時(shí)視線落在了自己所在岸的某一點(diǎn)上接著,他用步測(cè)的辦法量出自己與那個(gè)點(diǎn)的距離,這個(gè)距離就是他與碉堡間的距離 (如圖 3 所示)(1)按這個(gè)戰(zhàn)士的方法,找出教室或操場(chǎng)上與你距離相等的兩個(gè)點(diǎn),?并通過(guò)測(cè)量加以驗(yàn)證(2)你能解釋其中的道理嗎?【思路點(diǎn)撥】 情境中使用的方法在實(shí)際應(yīng)用中雖然是一種估測(cè),但用到的原理都是三角形全等(sas ) ;教學(xué)中,讓學(xué)生在教室里或操場(chǎng)上親自做一做,?實(shí)際體驗(yàn)五、課堂

51、總結(jié),發(fā)展?jié)撃?1請(qǐng)你敘述“邊角邊”定理 2證明兩個(gè)三角形全等的思路是:首先分析條件,?觀察已經(jīng)具備了什么條件;然后以已具備的條件為基礎(chǔ)根據(jù)全等三角形的判定方法,來(lái)確定還需要證明哪些邊或角對(duì)應(yīng)相等,再設(shè)法證明這些邊和角相等六、布置作業(yè),專題突破 1課本 p43 習(xí)題 122 第 3、4 題【總結(jié)反思】:12.2.3 三角形全等判定(asa )教學(xué)內(nèi)容本節(jié)課主要內(nèi)容是探索三角形全等的判定(asa ,aas ) ,?及利用全等三角形的證明教學(xué)目標(biāo) 1 理解“角邊角” 、 “角角邊”判定三角形全等的方法 2 經(jīng)歷探索“角邊角” 、 “角角邊”判定三角形全等的過(guò)程,能運(yùn)用已學(xué)三角形判定法解決實(shí)際問(wèn)題

52、3 培養(yǎng)良好的幾何推理意識(shí),發(fā)展思維,感悟全等三角形的應(yīng)用價(jià)值重、難點(diǎn)1重點(diǎn):應(yīng)用“角邊角” 、 “角角邊”判定三角形全等 2難點(diǎn):學(xué)會(huì)綜合法解決幾何推理問(wèn)題教具準(zhǔn)備投影儀、幻燈片、直尺、圓規(guī)教學(xué)方法采用“問(wèn)題教學(xué)法”在情境問(wèn)題中,激發(fā)學(xué)生的求知欲教學(xué)過(guò)程一、回顧交流,鞏固學(xué)習(xí)【知識(shí)回顧】(投影顯示)情境思考: 1小菁做了一個(gè)如圖1 所示的風(fēng)箏,其中edh= fdh ,ed=fd ,?將上述條件注在圖中,小明不用測(cè)量就能知道 eh=fh嗎?與同伴交流 (1) (2) 答案:能,因?yàn)楦鶕?jù)“sas ” ,可以得到 edh fdh ,從而 eh=fh 2如圖 2,ab=ad ,ac=ae ,能添上一

53、個(gè)條件證明出abc ade嗎? 答案: bc=?de (sss )或 bac=dae (sas ) 3如果兩邊及其中一邊的對(duì)角對(duì)應(yīng)相等,兩個(gè)三角形一定會(huì)全等嗎?試舉例說(shuō)明【教師活動(dòng)】操作投影儀,提出問(wèn)題,組織學(xué)生思考和提問(wèn)【學(xué)生活動(dòng)】通過(guò)情境思考,復(fù)習(xí)前面學(xué)過(guò)的知識(shí),學(xué)會(huì)正確選擇三角形全等的判定方法,小組交流,踴躍發(fā)言【教學(xué)形式】用問(wèn)題牽引,辨析、鞏固已學(xué)知識(shí),在師生互動(dòng)交流過(guò)程中,激發(fā)求知欲二、實(shí)踐操作,導(dǎo)入課題【動(dòng)手動(dòng)腦】(投影顯示)問(wèn)題探究:先任意畫(huà)一個(gè)abc ,再畫(huà)出一個(gè) abc,使 ab=ab ,a=a ,b=b (即使兩角和它們的夾邊對(duì)應(yīng)相等),把畫(huà)出的 abc剪下, ?放到 ab

54、c上,它們?nèi)葐??【學(xué)生活動(dòng)】動(dòng)手操作,感知問(wèn)題的規(guī)律,畫(huà)圖如下:畫(huà)一個(gè) abc ,使 ab =ab ,a=a, b=b:1 畫(huà) ab=ab;2 在 ab的同旁畫(huà) da b=a,eba =b ,ad,be 交于點(diǎn) c。探究規(guī)律:兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等(簡(jiǎn)寫(xiě)成“角邊角”或“asa ” ) dcbae【知識(shí)鋪墊】課本圖1128 中, a=a, b=b,那么 c=acb?嗎?為什么?【學(xué)生回答】根據(jù)三角形內(nèi)角和定理, c=180- a- b , c=180 - a-b, 由于 a=a,b=b, c=c【教師提問(wèn)】在abc和 def中, a=d, b=e,bc=ef (課本圖1129

55、) , abc與 def全等嗎?【學(xué)生活動(dòng)】運(yùn)用三角形內(nèi)角和定理,以及“asa ”很快證出 abc efd ,并且歸納如下: ? ?歸納規(guī)律: ?兩個(gè)角和其中一個(gè)角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等(簡(jiǎn)與成aas ) 三、范例點(diǎn)擊,應(yīng)用所學(xué)【例 3】如課本圖11210,d在 ab上, e在 ac上, ab=ac , b=c,求證: ad=ae 【教師活動(dòng)】引導(dǎo)學(xué)生,分析例3?關(guān)鍵是尋找到和已知條件有關(guān)的acd? 和 abe ,再證它們?nèi)?,從而得?ad=ae 證明:在 acd與 abe中,()aaacabcb公共角 acd abe (asa )ad=ae 【學(xué)生活動(dòng)】參與教師分析,領(lǐng)會(huì)推理方法【

56、媒體使用】投影顯示例3【教學(xué)形式】師生互動(dòng)【教師提問(wèn)】三角對(duì)應(yīng)相等的兩個(gè)三角形全等嗎?【學(xué)生活動(dòng)】與同伴交流,得到有三角對(duì)應(yīng)相等的兩個(gè)三角形不一定會(huì)全等,拿出三角板進(jìn)行說(shuō)明,如圖 3,下面這塊三角形的內(nèi)外邊形成的abc和ab?c 中, a=a, b=b, c=c,但是它們不全等 (形狀相同,大小不等) 四、隨堂練習(xí),鞏固深化課本 p13 練習(xí)第 1,2 題【探研時(shí)空】 1如圖4,小紅不慎將一塊三角形模具打碎為兩塊,?她是否可以只帶其中一塊碎片到商店去,就能配一塊與原來(lái)一樣的三角形模具呢?如果可以,帶哪塊去合適?為什么?【思路點(diǎn)撥】這是一個(gè)實(shí)際問(wèn)題,應(yīng)帶含有兩個(gè)角的那一塊,由“角邊角”可知,利用

57、這塊能配出一個(gè)與原來(lái)全等的三角形模具2. 小穎在練習(xí)本上畫(huà)一個(gè)三角形,小蘭和她開(kāi)個(gè)玩笑,?將墨跡污染到這塊三角形的圖形上(如圖5) ,急得小穎直叫, ?要小蘭畫(huà)出一個(gè)與原來(lái)完全一樣的三角形來(lái),小蘭該怎么辦呢?你能幫她嗎?【思路點(diǎn)撥】觀察圖形,可知未被墨水污染的有兩條邊及其夾角,?根據(jù)“ sas ”可以作一個(gè)與原來(lái)完全一樣的三角形五、課堂總結(jié),發(fā)展?jié)撃?1證明兩個(gè)三角形全等有幾種方法?如何正確選擇和應(yīng)用這些方法? 2全等三角形性質(zhì)可以用來(lái)證明哪些問(wèn)題?舉例說(shuō)明 3你在本節(jié)課的探究過(guò)程中,有什么感想?六、布置作業(yè),專題突破 1課本 p44 習(xí)題 122 第 5,6,9,10 題七、板書(shū)設(shè)計(jì)把黑板分

58、成三部分,左邊部分板書(shū)“角邊角”、 “角角邊”判定法,中間部分板書(shū)例題、畫(huà)圖,右邊部分板書(shū)練習(xí)【總結(jié)反思】:12.2.5 直角三角形全等判定(hl)教學(xué)內(nèi)容本節(jié)課主要內(nèi)容是探究直角三角形的判定方法教學(xué)目標(biāo) 1在操作、比較中理解直角三角形全等的過(guò)程,并能用于解決實(shí)際問(wèn)題 2經(jīng)歷探索直角三角形全等判定的過(guò)程,掌握數(shù)學(xué)方法,提高合情推理的能力 3 培養(yǎng)幾何推理意識(shí),激發(fā)學(xué)生求知欲,感悟幾何思維的內(nèi)涵重、難點(diǎn)與關(guān)鍵 1重點(diǎn):理解利用“斜邊、直角邊”來(lái)判定直角三角形全等的方法 2難點(diǎn):培養(yǎng)有條理的思考能力,正確使用“綜合法”表達(dá) 3關(guān)鍵:判定兩個(gè)三角形全等時(shí),?要注意這兩個(gè)三角形中已經(jīng)具有一對(duì)角相等的條

59、件,只需找到另外兩個(gè)條件即可教具準(zhǔn)備投影儀、幻燈片、直尺、圓規(guī)教學(xué)方法采用“問(wèn)題探究”的教學(xué)方法,讓學(xué)生在互動(dòng)交流中領(lǐng)會(huì)知識(shí)教學(xué)過(guò)程一、回顧交流,遷移拓展【問(wèn)題探究】圖 1 是兩個(gè)直角三角形,除了直角相等的條件,還要滿足幾個(gè)條件,?這兩個(gè)直角三角形才能全等?【教師活動(dòng)】操作投影儀,提出“問(wèn)題探究”,組織學(xué)生討論【學(xué)生活動(dòng)】小組討論,發(fā)表意見(jiàn):“由三角形全等條件可知,對(duì)于兩個(gè)直角三角形,滿足一邊一銳角對(duì)應(yīng)相等,或兩直角邊對(duì)應(yīng)相等,這兩個(gè)直角三角形就全等了”【媒體使用】投影顯示“問(wèn)題探究”【教學(xué)形式】分四人小組,合作、討論【情境導(dǎo)入】如圖2 所示舞臺(tái)背景的形狀是兩個(gè)直角三角形,工作人員想知道這兩個(gè)

60、直角三角形是否全等,但每個(gè)三角形都有一條直角邊被花盆遮住無(wú)法測(cè)量(1)你能幫他想個(gè)辦法嗎?(2)如果他只帶了一個(gè)卷尺,能完成這個(gè)任務(wù)嗎?工作人員測(cè)量了每個(gè)三角形沒(méi)有被遮住的直角邊和斜邊,發(fā)現(xiàn)它們分別對(duì)應(yīng)相等,于是他就肯定“兩個(gè)直角三角形是全等的” ,你相信他的結(jié)論嗎?【思路點(diǎn)撥】(1)學(xué)生可以回答去量斜邊和一個(gè)銳角,或直角邊和一個(gè)銳角,?但對(duì)問(wèn)題( 2)學(xué)生難以回答此時(shí), ?教師可以引導(dǎo)學(xué)生對(duì)工作人員提出的辦法及結(jié)論進(jìn)行思考,并驗(yàn)證它們的方法,從而展開(kāi)對(duì)直角三角形特殊條件的探索【教師活動(dòng)】操作投影儀,提出問(wèn)題,引導(dǎo)學(xué)生思考、驗(yàn)證【學(xué)生活動(dòng)】思考問(wèn)題,探究原理做一做如課本圖11211:任意畫(huà)出一

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論