




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、導(dǎo)數(shù)的基礎(chǔ)知識(shí)一導(dǎo)數(shù)的定義:2.利用定義求導(dǎo)數(shù)的步驟:求函數(shù)的增量:;求平均變化率:;取極限得導(dǎo)數(shù):(下面內(nèi)容必記)二、導(dǎo)數(shù)的運(yùn)算:(1)基本初等函數(shù)的導(dǎo)數(shù)公式及常用導(dǎo)數(shù)運(yùn)算公式:法則1:;(口訣:和及差的導(dǎo)數(shù)等于導(dǎo)數(shù)的和及差).法則2:(口訣:前導(dǎo)后不導(dǎo)相乘,后導(dǎo)前不導(dǎo)相乘,中間是正號(hào))法則3:(口訣:分母平方要記牢,上導(dǎo)下不導(dǎo)相乘,下導(dǎo)上不導(dǎo)相乘,中間是負(fù)號(hào))(2)復(fù)合函數(shù)的導(dǎo)數(shù)求法:換元,令,則分別求導(dǎo)再相乘回代題型一、導(dǎo)數(shù)定義的理解題型二:導(dǎo)數(shù)運(yùn)算1、已知,則2、若,則3.=ax3+3x2+2 ,則a=()三導(dǎo)數(shù)的物理意義1.求瞬時(shí)速度:物體在時(shí)刻時(shí)的瞬時(shí)速度就是物體運(yùn)動(dòng)規(guī)律在時(shí)的導(dǎo)數(shù)
2、,即有。2.Vs/(t)表示即時(shí)速度。a=v/(t) 表示加速度。四導(dǎo)數(shù)的幾何意義:函數(shù)在處導(dǎo)數(shù)的幾何意義,曲線在點(diǎn)處切線的斜率是。于是相應(yīng)的切線方程是:。題型三用導(dǎo)數(shù)求曲線的切線注意兩種情況:(1)曲線在點(diǎn)處切線:性質(zhì):。相應(yīng)的切線方程是:(2)曲線過點(diǎn)處切線:先設(shè)切點(diǎn),切點(diǎn)為 ,則斜率k=,切點(diǎn)在曲線上,切點(diǎn)在切線上,切點(diǎn)坐標(biāo)代入方程得關(guān)于a,b的方程組,解方程組來確定切點(diǎn),最后求斜率k=,確定切線方程。例題在曲線y=x3+3x2+6x-10的切線中,求斜率最小的切線方程;解析:(1)當(dāng)x0=-1時(shí),k有最小值3,此時(shí)P的坐標(biāo)為(-1,-14)故所求切線的方程為3x-y-11=0五函數(shù)的單
3、調(diào)性:設(shè)函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo),(1)該區(qū)間內(nèi)為增函數(shù);(2)該區(qū)間內(nèi)為減函數(shù);注意:當(dāng)在某個(gè)區(qū)間內(nèi)個(gè)別點(diǎn)處為零,在其余點(diǎn)處為正(或負(fù))時(shí),在這個(gè)區(qū)間上仍是遞增(或遞減)的。(3)在該區(qū)間內(nèi)單調(diào)遞增在該區(qū)間內(nèi)恒成立;(4)在該區(qū)間內(nèi)單調(diào)遞減在該區(qū)間內(nèi)恒成立;題型一、利用導(dǎo)數(shù)證明(或判斷)函數(shù)f(x)在某一區(qū)間上單調(diào)性:步驟: (1)求導(dǎo)數(shù) (2)判斷導(dǎo)函數(shù)在區(qū)間上的符號(hào)(3)下結(jié)論該區(qū)間內(nèi)為增函數(shù); 該區(qū)間內(nèi)為減函數(shù);題型二、利用導(dǎo)數(shù)求單調(diào)區(qū)間求函數(shù)單調(diào)區(qū)間的步驟為:(1)分析 的定義域; (2)求導(dǎo)數(shù) (3)解不等式,解集在定義域內(nèi)的部分為增區(qū)間(4)解不等式,解集在定義域內(nèi)的部分為減區(qū)間題型
4、三、利用單調(diào)性求參數(shù)的取值(轉(zhuǎn)化為恒成立問題)思路一.(1)在該區(qū)間內(nèi)單調(diào)遞增在該區(qū)間內(nèi)恒成立;(2)在該區(qū)間內(nèi)單調(diào)遞減在該區(qū)間內(nèi)恒成立;思路二.先求出函數(shù)在定義域上的單調(diào)增或減區(qū)間,則已知中限定的單調(diào)增或減區(qū)間是定義域上的單調(diào)增或減區(qū)間的子集。注意:若函數(shù)f(x)在(a,c)上為減函數(shù),在(c,b)上為增函數(shù),則x=c兩側(cè)使函數(shù)(x)變號(hào),即x=c為函數(shù)的一個(gè)極值點(diǎn),所以例題若函數(shù),若則( )A. a< b < c B. c < b < a C. c < a < b D. b < a < c六、函數(shù)的極值及其導(dǎo)數(shù)的關(guān)系:1.極值的定義:設(shè)函數(shù)在
5、點(diǎn)附近有定義,且若對(duì)附近的所有的點(diǎn)都有(或,則稱為函數(shù)的一個(gè)極大(或?。┲担瑸闃O大(或極小)值點(diǎn)??蓪?dǎo)數(shù)在極值點(diǎn)處的導(dǎo)數(shù)為0(即),但函數(shù)在某點(diǎn)處的導(dǎo)數(shù)為0,并不一定函數(shù)在該處取得極值(如在處的導(dǎo)數(shù)為0,但沒有極值)。求極值的步驟:第一步:求導(dǎo)數(shù);第二步:求方程的所有實(shí)根;第三步:列表考察在每個(gè)根附近,從左到右,導(dǎo)數(shù)的符號(hào)如何變化,若的符號(hào)由正變負(fù),則是極大值;若的符號(hào)由負(fù)變正,則是極小值;若的符號(hào)不變,則不是極值,不是極值點(diǎn)。2、函數(shù)的最值:最值的定義:若函數(shù)在定義域D內(nèi)存,使得對(duì)任意的,都有,(或)則稱為函數(shù)的最大(?。┲?,記作(或)如果函數(shù)在閉區(qū)間上的圖象是一條連續(xù)不間斷的曲線,則該函數(shù)
6、在閉區(qū)間上必有最大值和最小值。求可導(dǎo)函數(shù)在閉區(qū)間上的最值方法:第一步;求在區(qū)間內(nèi)的極值;第二步:比較的極值及、的大?。旱谌剑合陆Y(jié)論:最大的為最大值,最小的為最小值。注意:1、極值及最值關(guān)系:函數(shù)的最值是比較整個(gè)定義域區(qū)間的函數(shù)值得出的,函數(shù)的最大值和最小值點(diǎn)可以在極值點(diǎn)、不可導(dǎo)點(diǎn)、區(qū)間的端點(diǎn)處取得。極值最值。函數(shù)f(x)在區(qū)間a,b上的最大值為極大值和f(a) 、f(b)中最大的一個(gè)。最小值為極小值和f(a) 、f(b)中最小的一個(gè)。2函數(shù)在定義域上只有一個(gè)極值,則它對(duì)應(yīng)一個(gè)最值(極大值對(duì)應(yīng)最大值;極小值對(duì)應(yīng)最小值)3、注意:極大值不一定比極小值大。如的極大值為,極小值為2。注意:當(dāng)x=x0
7、時(shí),函數(shù)有極值 f/(x0)0。但是,f/(x0)0不能得到當(dāng)x=x0時(shí),函數(shù)有極值;判斷極值,還需結(jié)合函數(shù)的單調(diào)性說明。題型一、求極值及最值題型二、導(dǎo)數(shù)的極值及最值的應(yīng)用題型四、導(dǎo)數(shù)圖象及原函數(shù)圖象關(guān)系 導(dǎo)函數(shù) 原函數(shù) 的符號(hào) 單調(diào)性及x軸的交點(diǎn)且交點(diǎn)兩側(cè)異號(hào) 極值的增減性 的每一點(diǎn)的切線斜率的變化趨勢(shì)(的圖象的增減幅度) 的增 的每一點(diǎn)的切線斜率增大(的圖象的變化幅度快) 減的每一點(diǎn)的切線斜率減小 (的圖象的變化幅度慢)例1. 已知f(x)=ex-ax-1.(1)求f(x)的單調(diào)增區(qū)間;(2)若f(x)在定義域R內(nèi)單調(diào)遞增,求a的取值范圍;(3)是否存在a,使f(x)在(-,0上單調(diào)遞減,
8、在0,+)上單調(diào)遞增?若存在,求出a的值;若不存在,說明理由.解:=ex-a.(1)若a0,=ex-a0恒成立,即f(x)在R上遞增.若a>0,ex-a0,exa,xlna.f(x)的單調(diào)遞增區(qū)間為(lna,+).(2)f(x)在R內(nèi)單調(diào)遞增,0在R上恒成立.ex-a0,即aex在R上恒成立.a(ex)min,又ex>0,a0.(3) 由題意知,x=0為f(x)的極小值點(diǎn).=0,即e0-a=0,a=1.例2. 已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點(diǎn)x=1處的切線為l:3x-y+1=0,若x=時(shí),y=f(x)有極值.(1)求a,b,c的值;(2)求y=f(x)
9、在-3,1上的最大值和最小值.解 (1)由f(x)=x3+ax2+bx+c,得=3x2+2ax+b,當(dāng)x=1時(shí),切線l的斜率為3,可得2a+b=0 當(dāng)x=時(shí),y=f(x)有極值,則=0,可得4a+3b+4=0 由解得a=2,b=-4.由于切點(diǎn)的橫坐標(biāo)為x=1,f(1)=4.1+a+b+c=4.c=5.(2)由(1)可得f(x)=x3+2x2-4x+5,=3x2+4x-4,令=0,得x=-2,x=.當(dāng)x變化時(shí),y,y的取值及變化如下表:x-3(-3,-2)-21 y+0-0+y8單調(diào)遞增13單調(diào)遞減單調(diào)遞增4 y=f(x)在-3,1上的最大值為13,最小值為例3.當(dāng) ,證明不等式.證明:,則,當(dāng)
10、時(shí)。在內(nèi)是增函數(shù),即,又,當(dāng)時(shí),在內(nèi)是減函數(shù),即,因此,當(dāng)時(shí),不等式成立.點(diǎn)評(píng):由題意構(gòu)造出兩個(gè)函數(shù),.利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間或求最值,從而導(dǎo)出是解決本題的關(guān)鍵.七定積分求值1定積分的概念 設(shè)函數(shù)在區(qū)間上連續(xù),則2.用定義求定積分的一般方法是:分割:等分區(qū)間;近似代替:取點(diǎn);求和:;取極限:3.曲邊圖形面積:;在軸上方的面積取正,下方的面積取負(fù) 變速運(yùn)動(dòng)路程; 變力做功 4定積分的性質(zhì)性質(zhì)1 (其中k是不為0的常數(shù)) 性質(zhì)2性質(zhì)3 (定積分對(duì)積分區(qū)間的可加性)5.定理 函數(shù)是上的一個(gè)原函數(shù),即則導(dǎo)數(shù)各種題型方法總結(jié)(一)關(guān)于二次函數(shù)的不等式恒成立的主要解法:1、分離變量;2變更主元;3根分布
11、;4判別式法5、二次函數(shù)區(qū)間最值求法:(1)對(duì)稱軸(重視單調(diào)區(qū)間)及定義域的關(guān)系(2)端點(diǎn)處和頂點(diǎn)是最值所在(二)分析每種題型的本質(zhì),你會(huì)發(fā)現(xiàn)大部分都在解決“不等式恒成立問題”以及“充分應(yīng)用數(shù)形結(jié)合思想”,創(chuàng)建不等關(guān)系求出取值范圍。(三)同學(xué)們?cè)诳蠢}時(shí),請(qǐng)注意尋找關(guān)鍵的等價(jià)變形和回歸的基礎(chǔ)一、基礎(chǔ)題型:函數(shù)的單調(diào)區(qū)間、極值、最值;不等式恒成立;1、此類問題提倡按以下三個(gè)步驟進(jìn)行解決:第一步:令得到兩個(gè)根;第二步:畫兩圖或列表;第三步:由圖表可知;其中不等式恒成立問題的實(shí)質(zhì)是函數(shù)的最值問題,2、常見處理方法有三種:第一種:分離變量求最值-用分離變量時(shí)要特別注意是否需分類討論(>0,=0,
12、<0)第二種:變更主元(即關(guān)于某字母的一次函數(shù))-(已知誰的范圍就把誰作為主元);例1:設(shè)函數(shù)在區(qū)間D上的導(dǎo)數(shù)為,在區(qū)間D上的導(dǎo)數(shù)為,若在區(qū)間D上,恒成立,則稱函數(shù)在區(qū)間D上為“凸函數(shù)”,已知實(shí)數(shù)m是常數(shù),(1)若在區(qū)間上為“凸函數(shù)”,求m的取值范圍;(2)若對(duì)滿足的任何一個(gè)實(shí)數(shù),函數(shù)在區(qū)間上都為“凸函數(shù)”,求的最大值.解:由函數(shù) 得(1)在區(qū)間上為“凸函數(shù)”,則 在區(qū)間0,3上恒成立 解法一:從二次函數(shù)的區(qū)間最值入手:等價(jià)于解法二:分離變量法:當(dāng)時(shí), 恒成立, 當(dāng)時(shí), 恒成立等價(jià)于的最大值()恒成立,而()是增函數(shù),則(2)當(dāng)時(shí)在區(qū)間上都為“凸函數(shù)”則等價(jià)于當(dāng)時(shí) 恒成立變更主元法 再等
13、價(jià)于在恒成立(視為關(guān)于m的一次函數(shù)最值問題)-22例2:設(shè)函數(shù) ()求函數(shù)f(x)的單調(diào)區(qū)間和極值; ()若對(duì)任意的不等式恒成立,求a的取值范圍.(二次函數(shù)區(qū)間最值的例子)解:()3aaa3a令得的單調(diào)遞增區(qū)間為(a,3a)令得的單調(diào)遞減區(qū)間為(,a)和(3a,+)當(dāng)x=a時(shí),極小值= 當(dāng)x=3a時(shí),極大值=b. ()由|a,得:對(duì)任意的恒成立則等價(jià)于這個(gè)二次函數(shù)的對(duì)稱軸(放縮法)即定義域在對(duì)稱軸的右邊,這個(gè)二次函數(shù)的最值問題:?jiǎn)握{(diào)增函數(shù)的最值問題。上是增函數(shù). (9分)于是,對(duì)任意,不等式恒成立,等價(jià)于 又點(diǎn)評(píng):重視二次函數(shù)區(qū)間最值求法:對(duì)稱軸(重視單調(diào)區(qū)間)及定義域的關(guān)系第三種:構(gòu)造函數(shù)求
14、最值題型特征:恒成立恒成立;從而轉(zhuǎn)化為第一、二種題型例3;已知函數(shù)圖象上一點(diǎn)處的切線斜率為,()求的值;()當(dāng)時(shí),求的值域;()當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)t的取值范圍。解:(), 解得()由()知,在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞減又的值域是()令思路1:要使恒成立,只需,即分離變量思路2:二次函數(shù)區(qū)間最值二、已知函數(shù)在某個(gè)區(qū)間上的單調(diào)性求參數(shù)的范圍解法1:轉(zhuǎn)化為在給定區(qū)間上恒成立, 回歸基礎(chǔ)題型解法2:利用子區(qū)間(即子集思想);首先求出函數(shù)的單調(diào)增或減區(qū)間,然后讓所給區(qū)間是求的增或減區(qū)間的子集; 做題時(shí)一定要看清楚“在(m,n)上是減函數(shù)”及“函數(shù)的單調(diào)減區(qū)間是(a,b)”,要弄清楚兩
15、句話的區(qū)別:前者是后者的子集例4:已知,函數(shù)()如果函數(shù)是偶函數(shù),求的極大值和極小值;()如果函數(shù)是上的單調(diào)函數(shù),求的取值范圍解:. ()是偶函數(shù),. 此時(shí), 令,解得:. 列表如下:(,2)2(2,2)2(2,+)+00+遞增極大值遞減極小值遞增可知:的極大值為,的極小值為. ()函數(shù)是上的單調(diào)函數(shù),在給定區(qū)間R上恒成立判別式法則解得:. 綜上,的取值范圍是. 例5、已知函數(shù) (I)求的單調(diào)區(qū)間; (II)若在0,1上單調(diào)遞增,求a的取值范圍。子集思想(I) 1、 當(dāng)且僅當(dāng)時(shí)取“=”號(hào),單調(diào)遞增。 2、a-1-1單調(diào)增區(qū)間: 單調(diào)增區(qū)間:(II)當(dāng) 則是上述增區(qū)間的子集:1、時(shí),單調(diào)遞增 符
16、合題意2、,綜上,a的取值范圍是0,1。 三、根的個(gè)數(shù)問題提型一 函數(shù)f(x)及g(x)(或及x軸)的交點(diǎn)=即方程根的個(gè)數(shù)問題解題步驟第一步:畫出兩個(gè)圖像即“穿線圖”(即解導(dǎo)數(shù)不等式)和“趨勢(shì)圖”即三次函數(shù)的大致趨勢(shì)“是先增后減再增”還是“先減后增再減”;第二步:由趨勢(shì)圖結(jié)合交點(diǎn)個(gè)數(shù)或根的個(gè)數(shù)寫不等式(組);主要看極大值和極小值及0的關(guān)系;第三步:解不等式(組)即可;例6、已知函數(shù),且在區(qū)間上為增函數(shù)(1) 求實(shí)數(shù)的取值范圍;(2) 若函數(shù)及的圖象有三個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍解:(1)由題意在區(qū)間上為增函數(shù),在區(qū)間上恒成立(分離變量法)即恒成立,又,故的取值范圍為(2)設(shè),令得或由(1)
17、知,當(dāng)時(shí),在R上遞增,顯然不合題意當(dāng)時(shí),隨的變化情況如下表:極大值極小值由于,欲使及的圖象有三個(gè)不同的交點(diǎn),即方程有三個(gè)不同的實(shí)根,故需,即,解得綜上,所求的取值范圍為根的個(gè)數(shù)知道,部分根可求或已知。例7、已知函數(shù)(1)若是的極值點(diǎn)且的圖像過原點(diǎn),求的極值;(2)若,在(1)的條件下,是否存在實(shí)數(shù),使得函數(shù)的圖像及函數(shù)的圖像恒有含的三個(gè)不同交點(diǎn)?若存在,求出實(shí)數(shù)的取值范圍;否則說明理由。高1考1資1源2網(wǎng)解:(1)的圖像過原點(diǎn),則,又是的極值點(diǎn),則-1(2)設(shè)函數(shù)的圖像及函數(shù)的圖像恒存在含的三個(gè)不同交點(diǎn),等價(jià)于有含的三個(gè)根,即:整理得:即:恒有含的三個(gè)不等實(shí)根(計(jì)算難點(diǎn)來了:)有含的根,則必可
18、分解為,故用添項(xiàng)配湊法因式分解, 十字相乘法分解:恒有含的三個(gè)不等實(shí)根等價(jià)于有兩個(gè)不等于-1的不等實(shí)根。題型二:切線的條數(shù)問題=以切點(diǎn)為未知數(shù)的方程的根的個(gè)數(shù)例7、已知函數(shù)在點(diǎn)處取得極小值4,使其導(dǎo)數(shù)的的取值范圍為,求:(1)的解析式;(2)若過點(diǎn)可作曲線的三條切線,求實(shí)數(shù)的取值范圍(1)由題意得:在上;在上;在上因此在處取得極小值由聯(lián)立得:,(2)設(shè)切點(diǎn)Q,過令,求得:,方程有三個(gè)根。需:故:;因此所求實(shí)數(shù)的范圍為:題型三:已知在給定區(qū)間上的極值點(diǎn)個(gè)數(shù)則有導(dǎo)函數(shù)=0的根的個(gè)數(shù)解法:根分布或判別式法例8、解:函數(shù)的定義域?yàn)椋ǎ┊?dāng)m4時(shí),f (x) x3x210x,x27x10,令 , 解得或.
19、令 , 解得可知函數(shù)f(x)的單調(diào)遞增區(qū)間為和(5,),單調(diào)遞減區(qū)間為()x2(m3)xm6, 1要使函數(shù)yf (x)在(1,)有兩個(gè)極值點(diǎn),x2(m3)xm6=0的根在(1,)根分布問題:則, 解得m3例9、已知函數(shù),(1)求的單調(diào)區(qū)間;(2)令x4f(x)(xR)有且僅有3個(gè)極值點(diǎn),求a的取值范圍解:(1)當(dāng)時(shí),令解得,令解得,所以的遞增區(qū)間為,遞減區(qū)間為.當(dāng)時(shí),同理可得的遞增區(qū)間為,遞減區(qū)間為.(2)有且僅有3個(gè)極值點(diǎn)=0有3個(gè)根,則或,方程有兩個(gè)非零實(shí)根,所以或而當(dāng)或時(shí)可證函數(shù)有且僅有3個(gè)極值點(diǎn)其它例題:(一)最值問題及主元變更法的例子.已知定義在上的函數(shù)在區(qū)間上的最大值是5,最小值是
20、11.()求函數(shù)的解析式;()若時(shí),恒成立,求實(shí)數(shù)的取值范圍.解:() 令=0,得因?yàn)?,所以可得下表?+0-極大因此必為最大值,因此, , 即,(),等價(jià)于, 令,則問題就是在上恒成立時(shí),求實(shí)數(shù)的取值范圍,為此只需,即, 解得,所以所求實(shí)數(shù)的取值范圍是0,1.(二)根分布及線性規(guī)劃例子例:已知函數(shù)() 若函數(shù)在時(shí)有極值且在函數(shù)圖象上的點(diǎn)處的切線及直線平行,求的解析式;() 當(dāng)在取得極大值且在取得極小值時(shí), 設(shè)點(diǎn)所在平面區(qū)域?yàn)镾, 經(jīng)過原點(diǎn)的直線L將S分為面積比為1:3的兩部分, 求直線L的方程.解:().由, 函數(shù)在時(shí)有極值 ,又在處的切線及直線平行, 故 . 7分 () 解法一: 由 及在取得極大值且在取得極小值, 即 令, 則 故點(diǎn)所在平面區(qū)域S為如圖ABC, 易得, , , , , 同時(shí)DE為ABC的中位線, 所求一條直線L的方程為:另一種情況設(shè)不垂直于x軸的直線L也將S分為面積比為1:3的兩部分, 設(shè)直線L方程為,它及AC,BC分別交于F、G, 則 , 由 得點(diǎn)F的橫坐標(biāo)為:由 得點(diǎn)G的橫坐標(biāo)為:即 解得: 或 (舍去) 故這時(shí)直線方程為:綜上,所求直線方程為:或 .12分() 解法二: 由 及在取得極大值且在取得極小值, 即 令, 則 故點(diǎn)所在平面區(qū)域S為如圖ABC,易得, , , , , 同時(shí)DE為ABC的中位線, 所求一
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年拉薩貨運(yùn)從業(yè)資格證考試試題及答案解析
- 保障性合同范本
- 區(qū)域總經(jīng)理合同范本
- 醫(yī)療就業(yè)合同范本
- 包食堂合同范本
- 促銷活動(dòng)場(chǎng)地出租合同范本
- 農(nóng)村電商合同范本
- 利用合同范本
- 前廳接待勞務(wù)合同范本
- 5人合作合同范本
- 七年級(jí)下冊(cè)《平行線的判定》課件與練習(xí)
- 2025年中考英語時(shí)文閱讀 6篇有關(guān)電影哪吒2和 DeepSeek的英語閱讀(含答案)
- 修高速土方合同范例
- 2024年湖北省武漢市中考語文試卷
- 二零二五年度高品質(zhì)小區(qū)瀝青路面翻新施工與道路綠化合同2篇
- 2024年形勢(shì)與政策復(fù)習(xí)題庫含答案(綜合題)
- 2022年北京市初三一模語文試題匯編:基礎(chǔ)知識(shí)綜合
- 2025年廣東食品藥品職業(yè)學(xué)院高職單招高職單招英語2016-2024年參考題庫含答案解析
- 2 爆破工試題及答案
- 電路基礎(chǔ)知到智慧樹章節(jié)測(cè)試課后答案2024年秋江西職業(yè)技術(shù)大學(xué)
- DCMM數(shù)據(jù)管理師練習(xí)測(cè)試卷
評(píng)論
0/150
提交評(píng)論