w……電路磁路實用教案_第1頁
w……電路磁路實用教案_第2頁
w……電路磁路實用教案_第3頁
w……電路磁路實用教案_第4頁
w……電路磁路實用教案_第5頁
已閱讀5頁,還剩75頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、第十章 線性電路過渡過程(guchng)的時域分析一電路的過渡一電路的過渡(gud)(gud)過程過程 穩(wěn)定狀態(tài)(穩(wěn)態(tài)):電路中所有的響應或是恒定不變,或是按周期規(guī)律變化(binhu)的這種工作狀態(tài)稱為電路的穩(wěn)定狀態(tài)。 過渡過程(動態(tài)、暫態(tài)):電路由原來的穩(wěn)態(tài)轉(zhuǎn)變到另一個穩(wěn)態(tài),這種轉(zhuǎn)變一般說來不是即時完成的,需要一個過程,這個過程稱為電路的過渡過程。任何系統(tǒng)的狀態(tài)都有相對穩(wěn)定和不穩(wěn)定兩種狀態(tài)在電路中,穩(wěn)定狀態(tài)是指在給定條件下電路中電壓、電流已達到穩(wěn)定值。不穩(wěn)定狀態(tài)是指動態(tài)。例如:電容C 的充電過程。第1頁/共79頁第一頁,共80頁。第十章 線性電路過渡過程(guchng)的時域分析三分析三分析

2、(fnx)(fnx)暫態(tài)的方法暫態(tài)的方法二產(chǎn)生二產(chǎn)生(chnshng)(chnshng)暫態(tài)的原因暫態(tài)的原因內(nèi)因內(nèi)因:電路為動態(tài)電路,即電路中含儲能元件L,C ; 外因外因:電路換路,即開關通斷、電源變化、元件參數(shù)變化等。 暫態(tài)分析中的電路方程是以電流、電壓為變量的微分方程。因此,暫態(tài)的分析有兩種方法: 經(jīng)典法(時域分析):以時間作為變量,直接求解微分方程的方法。 運算法(復頻域分析):采用積分變換求解微分方程的方法。例如通過拉普拉斯變換,將自變量轉(zhuǎn)換為復頻率變量。第2頁/共79頁第二頁,共80頁。第十章 線性電路過渡過程(guchng)的時域分析10.1 10.1 換路定律換路定律(dngl

3、)(dngl)和初始條件的計和初始條件的計算算一 換路定律(dngl) 換路:電路中支路的接通、切斷、短路或電路參數(shù)的突然改變及電路連接方式改變的統(tǒng)稱。并認為換路是即時完成的。 記: 表示換路時刻 (計時起點); 0t 表示換路前的終末瞬間;0t 表示換路后的初始瞬間。0t 能量只能連續(xù)變化而不能躍變 第3頁/共79頁第三頁,共80頁。第十章 線性電路過渡過程(guchng)的時域分析 原因是:儲能元件中能量的改變是需要時間的。即動態(tài)電路在換路后一般不能由原來(yunli)的穩(wěn)定狀態(tài)立刻到達新的穩(wěn)定狀態(tài) 。一般不能躍變212CCWCu電場能量為: 磁場能量為: 212LLWLi 換路定律(dn

4、gl) 在換路瞬間,當電容元件的電流為有限值時,電容電壓一般不能躍變;當電感元件的電壓為有限值時,電感電流一般不能躍變。 第4頁/共79頁第四頁,共80頁。第十章 線性電路過渡過程(guchng)的時域分析換路定律(dngl)的數(shù)學表達為:)0()0()0()0(LLCCiiuu二二 初始條件的計算初始條件的計算(j sun) (j sun) 初始值初始值:電路中的響應在換路后的最開始一瞬間(即 時)的值。初始值組成解電路微分方程的初始條件。 +0 相關初始值:用獨立初始值及KCL,KVL和歐姆定律來確定的其它初始值。 獨立初始值: 和 。由換路前決定。)0(Cu)0(Li第5頁/共79頁第五

5、頁,共80頁。第十章 線性電路過渡(gud)過程的時域分析)0(Cu電容元件用值為 的電壓源代替)0(Li電感元件用值為 的電流源代替2(0 )(0 )5 5V25VCLuR i 等效電路畫法:+0例:如圖,直流電壓源電壓 。電路原已達到穩(wěn)態(tài)。在 時斷開開關S。求 時的 12350V,5,20SURRR0t +0t LiCu、 、 、 、 、 。2Ru3RuLuCi解:換路前1250(0 )A5A5+5SLUiRR第6頁/共79頁第六頁,共80頁。第十章 線性電路過渡過程(guchng)的時域分析C+(0 )u+(0 )Li根據(jù)換路定律得: ,(0 )(0 )25VCCuu(0 )(0 )5A

6、LLii可畫 電路圖。從而可計算其它相關初始值,即:0223323(0 )(0 )5 5V=25V(0 )(0 )5A(0 )(0 )20 ( 5)V=100V(0 )(0 )(0 )(0 )( 25 100+25)V=100VRLCLRCLRRCuR iiiuR iuuuu 第7頁/共79頁第七頁,共80頁。第十章 線性電路過渡(gud)過程的時域分析10.2 10.2 一階電路的零輸入一階電路的零輸入(shr)(shr)響應響應RC一 電路的零輸入響應零輸入(shr)響應:僅由儲能元件初始儲能所引起的響應。0CRuu 在圖示電流、電壓的參考方向下,由KVL得換路后的電路方程 將元件的電壓電

7、流關系代入方程得 RiuRtuCiCdd0ddCCutuRC一階電路:可用一階微分方程描述的電路。第8頁/共79頁第八頁,共80頁。第十章 線性電路過渡(gud)過程的時域分析0ddCCutuRC這是一階常系數(shù)(xsh)線性齊次常微分方程,它的通解為 ptCAeu01RCp特征方程為1pRC 特征根為 RCtCAeu所以0AU0(0 )(0 )CCSuuUU將初始條件 ,代入得積分常數(shù)第9頁/共79頁第九頁,共80頁。第十章 線性電路過渡過程(guchng)的時域分析求得滿足初始條件的微分方程的解,即電容的零輸入響應(xingyng)電壓、電流分別為 0(0 )V(0)ttRCRCCCuueU

8、 et0d( )A( 0)dtCRCuUi tCettR 換路后,電容電壓和電流均按指數(shù)(zhsh)規(guī)律衰減到0。第10頁/共79頁第十頁,共80頁。第十章 線性電路過渡(gud)過程的時域分析 時間常數(shù)(sh jin chn sh) 在響應表達式中,令 ,則有 RC0tCuU e0( )tUi teR CA s FsVVRCSI單位: 稱 為電路的時間常數(shù)。 的大小反映了電路過渡過程的進展速度,它是反映過渡過程特征的一個重要的量。 第11頁/共79頁第十一頁,共80頁。第十章 線性電路過渡(gud)過程的時域分析在時間坐標軸上次(shn c)切距的長度等于時間常數(shù) 時間常數(shù)就是按照(nzho

9、)指數(shù)規(guī)律衰減的量衰減到它的初始值的36.8% 時所需時間。 100()0.368CutU eU 時間常數(shù)的意義 第12頁/共79頁第十二頁,共80頁。第十章 線性電路過渡過程(guchng)的時域分析將不同時刻的電容(dinrng)電壓值列于下表 t()0Cu 理論上: ,放電要經(jīng)歷無限大時間結(jié)束。53工程上認為:經(jīng)過 時間過渡過程即告結(jié)束。 時間(shjin)常數(shù)越大,衰減越慢,過渡過程持續(xù)的時間(shjin)越長。第13頁/共79頁第十三頁,共80頁。第十章 線性電路過渡(gud)過程的時域分析電阻在電容放電過程中消耗(xioho)的全部能量為 22200 0 01( ) d(e)d2t

10、RCRRUWit R tR tCUR 說明(shumng):電容在放電過程中釋放的能量的全部轉(zhuǎn)換為電阻消耗的能量。40 FC例:一組 的電容器從高壓電路斷開,斷開時電容器電壓 ,斷開后,電容器經(jīng)它本身的漏電阻放電。如電容器的漏電阻 ,問斷開后經(jīng)過多長時間,電容器的電壓衰減為 ? 05.77kVU 100MR 1kV解:電路為零輸入響應,所以有 第14頁/共79頁第十四頁,共80頁。第十章 線性電路過渡(gud)過程的時域分析400005.77kVttCuU ee36100 1040 10 s=4000sRC將 代入,得 1kVCu (4000ln5.77)s=7011st 例:圖示電路中,換路

11、前電路已處于穩(wěn)態(tài)。在 時將開關閉合,求 時電壓 和電流 、 及 。 0t 0t CuCi1i2i06(0 )(0 )33V1+2+3CCuuU解:66(2/3) 5 10 s=6 10 sRC 第15頁/共79頁第十五頁,共80頁。第十章 線性電路過渡(gud)過程的時域分析51.7 1003VttCuU ee551.7 101.7 1003A=2.5A2/3tttCUieeeR 51.7 102A3tCuie51.7 101C21.5Atiiie 第16頁/共79頁第十六頁,共80頁。第十章 線性電路過渡(gud)過程的時域分析RL二 電路的零輸入響應0LRuu將元件(yunjin)的電壓電

12、流關系代入方程(fngchng)得 RiuRddLiuLtd0diLRit 圖示電路,原已處于穩(wěn)態(tài), 時開關閉合。在圖示電流、電壓的參考方向下,由KVL得換路后的電路方程 0t 第17頁/共79頁第十七頁,共80頁。第十章 線性電路過渡(gud)過程的時域分析這是一階常系數(shù)(xsh)線性齊次常微分方程,它的通解為 ptiAe0LpR特征方程為RpL 特征根為 RtLiAe所以0AI00(0 )(0 )SUiiIR將初始條件 ,代入得積分常數(shù)d0diLRit第18頁/共79頁第十八頁,共80頁。第十章 線性電路過渡(gud)過程的時域分析求得滿足初始條件的微分方程(wi fn fn chn)的解

13、,即電感的零輸入響應電壓、電流分別為 0(0 )A(0)RRttLLiieI et0d( )V( 0)dRtLLiutLRI ett 換路后,電感電壓和電流均按指數(shù)(zhsh)規(guī)律衰減到0。其曲線如圖所示。0( )V(0)RtLRutRiRI et第19頁/共79頁第十九頁,共80頁。第十章 線性電路過渡過程(guchng)的時域分析 時間常數(shù)(sh jin chn sh) 令 ,則有 LR H ssLRSI單位:000ttLtRiI euRI euRI e 稱 為 電路的時間常數(shù)。同樣 的大小反映了電路過渡過程的進展速度。時間常數(shù)越大,過渡過程持續(xù)的時間越長。 RL第20頁/共79頁第二十頁

14、,共80頁。第十章 線性電路過渡過程(guchng)的時域分析 在過渡過程中,電感不斷放出能量為電阻所消耗(xioho),最后,原來儲存在電感中的磁場能量全部被電阻吸收而轉(zhuǎn)換成熱能。 例: 圖示電路中,一個繼電器線圈的 , ,電源電壓 , ,已知此繼電器釋放電流為 ,問開關S閉合后,經(jīng)過多少時間,繼電器才能釋放? 24VU 2.5HL 250R 0.004A1230R 0t 解: 時2.5s=0.01s250LR0124(0 )(0 )A0.05A=230+250UiiIRR10000.05AttiI ee將 代入,得0.004s0.050.01 lns0.025s0.004t 第21頁/共7

15、9頁第二十一頁,共80頁。第十章 線性電路過渡過程(guchng)的時域分析10.3 10.3 一階電路的零狀態(tài)一階電路的零狀態(tài)(zhungti)(zhungti)響響應應RC一 電路的零狀態(tài)響應 直流電壓源通過電阻對電容充電如圖。在圖示電流、電壓的參考方向下,由KVL得換路后的電路(dinl)方程 零狀態(tài)響應:由外施激勵所引起的響應。零狀態(tài):電路中所有儲能元件的 、 都為(0 )0Cu(0 )0Li 零的情況。RCSuuU把元件約束關系 、 代入,得RiuRddCuiCt第22頁/共79頁第二十二頁,共80頁。第十章 線性電路過渡(gud)過程的時域分析其解有兩部分(b fen)組成ddCC

16、SuRCuUt一階常系數(shù)線性非齊次常微分方程 CCCuuu方程(fngchng)的通解第一部分為方程的特解CSuU tCSuUAeSAU (0 )(0 )0CCuu將初始條件 ,代入得積分常數(shù)又稱強制分量或穩(wěn)態(tài)分量又稱自由分量或瞬態(tài)分量第二部分為對應齊次方程的通解 tCuAe ()RC第23頁/共79頁第二十三頁,共80頁。第十章 線性電路過渡過程(guchng)的時域分析最后(zuhu)得到響應的完全解為響應過程:電容電壓由零初始值開始以指數(shù)形式趨近于它的最終值,即直流電壓源電壓US,而電流在換路后瞬間,躍變到最大值,然后(rnhu)以此初始值開始按指數(shù)規(guī)律衰減到零。 (1)ddttCSSS

17、tCSuUU eUeuUiCetR電路接通直流電壓源的過程也即是電源通過電阻對電容充電的過程。在充電過程中,電源供給的能量一部分轉(zhuǎn)換成電場能量儲存在電容中,一部分被電阻轉(zhuǎn)換為熱能消耗。 第24頁/共79頁第二十四頁,共80頁。第十章 線性電路過渡(gud)過程的時域分析充電(chng din)效率2200d() dtSRCRUWRitRetR220()2tSRCURCeR212SCCUW 在充電過程中,電源提供的能量只有一半(ybn)轉(zhuǎn)換成電場能量儲存于電容中,另一半(ybn)則為電阻所消耗,也就是說,充電效率為有50%。 第25頁/共79頁第二十五頁,共80頁。第十章 線性電路過渡過程(gu

18、chng)的時域分析例:圖示電路中,換路前電容為充電。于 時將開關閉合,求 時電壓 。 0t 0t Cu解:對換(du hun)路后的電路求電容兩端的戴維寧等效電路,如圖。3126(3/6) 101000 10s=2 10 sRC330(3/6) 10 =2 10 R 93V=3V3+6SU 其中于是,得電路響應為55 10(1)3(1)VttCSuUee 第26頁/共79頁第二十六頁,共80頁。第十章 線性電路過渡(gud)過程的時域分析RL二 電路在直流激勵下的零狀態(tài)響應LRSuuU把元件約束關系 、 代入,得RiuRddLiuLt 圖中換路前電感無電流, 時閉合開關。在圖示電流、電壓的參

19、考方向下,由KVL得換路后的電路方程 0t ddSiLRiUt一階常系數(shù)線性非齊次常微分方程 其解仍由兩部分(b fen)組成iii第27頁/共79頁第二十七頁,共80頁。第十章 線性電路過渡過程(guchng)的時域分析其中穩(wěn)態(tài)分量SUiR 其瞬態(tài)分量形式為tiAe L R所以tSUiiiAeR代入初始條件 ,得 ,故(0 )(0 )0iiSAUR (1)A(0)tSUietR并得(1)V(0)V(0)tRStLSuRiUetuU et第28頁/共79頁第二十八頁,共80頁。第十章 線性電路過渡(gud)過程的時域分析響應過程響應過程:電感電流由零初始值開始以指數(shù)形式趨近于它的穩(wěn)態(tài)值,而電壓

20、在換路后,電壓達到最大值,并以此初始值開始按指數(shù)規(guī)律衰減到零。到達該值后,電壓和電流不再變化,電感相當于短路,其電壓為零,達到新的穩(wěn)態(tài)。此時,電感的磁場儲能為 。21()2SULR注意:直流激勵下的 及 電路的零狀態(tài)響應,若外加激勵增加K倍,則其零狀態(tài)響應也增加K倍,即零狀態(tài)響應與外加激勵成線性關系或稱零狀態(tài)線性零狀態(tài)線性。 RCRL第29頁/共79頁第二十九頁,共80頁。第十章 線性電路過渡過程(guchng)的時域分析解:對換路后的電路(dinl)求電感支路兩端的戴維寧等效電路(dinl),如圖。123150V,=100, =0.1HSURRRL例:圖示電路中,已知 ,設開關在 時接通,電

21、感電流的初值為零,求電流 和 。 0t 1i2i0111=100=5022RR11=150V=75V22OCSUU其中(qzhng)第30頁/共79頁第三十頁,共80頁。第十章 線性電路過渡(gud)過程的時域分析于是(ysh),得電路響應為1500150020275(1)(1)A0.5(1)A50+100tttOCUieeeRR020.11s=s50+1001500LRR及150015000 21115075+50 0.5(1)A(10.25)A100ttSOCUUR ieieR第31頁/共79頁第三十一頁,共80頁。第十章 線性電路過渡過程(guchng)的時域分析RL三 電路在正弦激勵下

22、的零狀態(tài)響應 圖中, 時閉合開關,使電路與正弦電壓 接通。電路的初始狀態(tài)為零。 為接入相位角(合合閘角閘角)。0t msin()SuUt換路后的電路(dinl)方程為mdsin()diLRiUtt其解仍由兩部分(b fen)組成iii其中穩(wěn)態(tài)分量 按正弦電流電路計算。i第32頁/共79頁第三十二頁,共80頁。第十章 線性電路過渡(gud)過程的時域分析所以sin()tmUiiitAeZ22j()(arctan)LZRLRLZR電路(dinl)阻抗為于是,穩(wěn)態(tài)分量為msin()ZUit 瞬態(tài)分量為tiAe L R代入初始條件 ,得 (0 )(0 )0ii第33頁/共79頁第三十三頁,共80頁。第

23、十章 線性電路過渡(gud)過程的時域分析最后(zuhu)得響應為mmsin()sin()A(0)tUUitetZZ 方程的穩(wěn)態(tài)分量與外加激勵具有相同(xin tn)的形式,即按與外加激勵同頻率的正弦規(guī)律變化。而暫態(tài)分量仍按指數(shù)規(guī)律衰減,隨時間增長趨于零。 msin()UAZ 第34頁/共79頁第三十四頁,共80頁。第十章 線性電路過渡過程(guchng)的時域分析兩種特殊兩種特殊(tsh)情況:情況: ,0msin()0UAZ mmsin()sin()A(0)tUUitetZZ響應:msin()A(0)UiittZ ,90mUAZ 電路無過渡過程立即進入穩(wěn)態(tài)mmsin(90 )A(0)tUU

24、itetZZ電流的暫態(tài)分量起始值最大,等于穩(wěn)態(tài)分量的最大值。第35頁/共79頁第三十五頁,共80頁。第十章 線性電路過渡過程(guchng)的時域分析解:合閘后的電路(dinl)的阻抗為例:有一電磁鐵,其電路模型如圖所示,已知:正弦工頻電源電壓 及 ,若接通電源的瞬時電壓初相角 ,求接通電源后電路電流 。 =17.4, =0.302HRL10220VU i22()(arctan)LZRLR22314 0.30217.4(314 0.302)(arctan)17.496.5 79.6 0.302s=0.0173s17.4LR電路的時間常數(shù)為第36頁/共79頁第三十六頁,共80頁。第十章 線性電路

25、過渡(gud)過程的時域分析穩(wěn)態(tài)分量(fn ling)為m220 2sin()sin(1079.6 )AZ96.5Uitt 3.22sin(69.6 )At合閘后瞬態(tài)分量(fn ling)為57.8m0.0173sin()3.22sin(69.6 )A3.02AtttUieeeZ 電路零狀態(tài)響應為57.83.22sin(69.6 )+3.02Atiiite第37頁/共79頁第三十七頁,共80頁。第十章 線性電路過渡(gud)過程的時域分析10.4 10.4 一階電路一階電路(dinl)(dinl)的全響應的全響應全響應(xingyng):當非零初始狀態(tài)的電路受到外加激勵作用時,電路的響應(xi

26、ngyng)。RC一一 電路的全響應電路的全響應 如圖電路中,設 ,電壓源電壓為 ,換路后 的方程仍為0(0 )CuUSUCuddCCSuRCuUt其解仍為tCCCSuuuUAe第38頁/共79頁第三十八頁,共80頁。第十章 線性電路過渡過程(guchng)的時域分析代入初始條件 ,得0(0 )(0 )CCuuU0SAUU故電容(dinrng)電壓的全響應為0()V(0)tCSSuUUUet0A(0)tSUUietR及電流 時的全響應曲線0SUU右邊第一項是穩(wěn)穩(wěn)態(tài)分量態(tài)分量,它等于外加激勵即直流電壓;第二項則是暫態(tài)暫態(tài)分量分量,它隨時間的增長而按指數(shù)規(guī)律逐漸衰減為零。 第39頁/共79頁第三十

27、九頁,共80頁。第十章 線性電路過渡(gud)過程的時域分析二二 一階電路一階電路(dinl)(dinl)全響應的兩種分解全響應的兩種分解 0()(0)tCSSuUUUet全響應分解為穩(wěn)態(tài)分量與暫態(tài)分量,能較明顯地反映電路的工作反映電路的工作階段階段,便于分析過渡過程的特點。全響應(xingyng) = 穩(wěn)態(tài)分量 + 暫態(tài)分量 0(1)(0)ttCSuU eUet全響應 = 零輸入響應 + 零狀態(tài)響應全響應分解為零輸入響應和零狀態(tài)響應,能明顯地反映響應與激反映響應與激勵的因果關系勵的因果關系,體現(xiàn)了線性電路的疊加性疊加性,而且便于分析計算。第40頁/共79頁第四十頁,共80頁。第十章 線性電路

28、過渡過程(guchng)的時域分析三三 分析一階電路分析一階電路(dinl)(dinl)全響應的三要素法全響應的三要素法 無論是把全響應分解為穩(wěn)態(tài)分量和暫態(tài)分量之和,還是分解為零輸入響應和零狀態(tài)響應之和,都不過是不同分法,而且上述的分量或響應均是全響應的特例。全響應,它是由初始值、特解和時間常數(shù)(sh jin chn sh)三個要素決定的。三要素法三要素法:是一階電路的求解方法及其響應形式進行歸納后得出的一個通用法則。 在同一個一階電路中的各響應的時間常數(shù)都是相同時間常數(shù)都是相同的的。對只有一個電容(或電感)元件的電路, ( ), 為換路后該電容(或電感)元件 所接二端電阻性網(wǎng)絡除源后的等等效

29、電阻效電阻。 RCL RR第41頁/共79頁第四十一頁,共80頁。第十章 線性電路過渡(gud)過程的時域分析 直流電源激勵(jl)下的三要素法公式全響應全響應(xingyng) = (xingyng) = 穩(wěn)態(tài)分量穩(wěn)態(tài)分量 + + 暫暫態(tài)分量態(tài)分量設:電路響應為 ,其中 ( )f t穩(wěn)態(tài)分量為 ; ( )f 初始值為 ; +(0 )f時間常數(shù)為 ; 則:一階電路全響應為( )( )tf tfAe 代入初始值 ,有 ,從而得全響應為+(0 )f+(0 )( )Aff+( )( ) (0 )( )(0)tf tfffet 三要素法三要素法公式公式三要素三要素第42頁/共79頁第四十二頁,共80頁

30、。第十章 線性電路過渡(gud)過程的時域分析 正弦電源(dinyun)激勵下的三要素法公式全響應全響應(xingyng) = (xingyng) = 穩(wěn)態(tài)分量穩(wěn)態(tài)分量 + + 暫態(tài)分量暫態(tài)分量正弦激勵時全響應仍是穩(wěn)態(tài)分量與暫態(tài)分量之和,但此時穩(wěn)態(tài)分量: ,是同頻率的正弦量。( )fttAe暫態(tài)分量:所以:一階電路全響應為( )( )tf tftAe代入初始值 ,有 ,從而得全響應為+(0 )f+(0 )(0 )Aff+( )( ) (0 )(0 )(0)tf tftffet穩(wěn)態(tài)分量穩(wěn)態(tài)分量 的初始值的初始值( )ft三要素三要素第43頁/共79頁第四十三頁,共80頁。第十章 線性電路過渡(g

31、ud)過程的時域分析解:+24(0 )(0 )A6A4ii例:圖中,設電路已達穩(wěn)態(tài)。于 時斷開開關,求斷開開關后電流 。 0t i24( )A2A8+4i 0.6s0.05s8+4LR200.05( )( ) (0 )( )2(62)A=2+4A(0)ttti tiiieeet 第44頁/共79頁第四十四頁,共80頁。第十章 線性電路過渡過程(guchng)的時域分析解:例:圖中,電路已達穩(wěn)態(tài)。于 時開關閉合,求 。 0t ( )u t+(0 )(0 )2 1V2Vuu2( )(1/2) 1VV3u 64(1/2) 300 10 s2 10 sRC450002 102224( )( ) (0

32、)( )(2)V=+V(0)3333tttu tuuueeet 第45頁/共79頁第四十五頁,共80頁。第十章 線性電路過渡(gud)過程的時域分析解:先求電感(din n)中電流。例:圖示電路, 時開關由1投向2,設換路前電路已達穩(wěn)態(tài),求電流 和 。 0t iLi+32(0 )(0 )A1.2A1+1/21+2LLii 3s1.8s1+1/2LR32( )A1.2A1+1/21+2Li 1.8( )( ) (0 )( )1.2( 1.2 1.2)AttLLLLi tiiiee 0.56=1.22.4A(0)tet第46頁/共79頁第四十六頁,共80頁。第十章 線性電路過渡過程(guchng)

33、的時域分析求電流i31(0 )2 (0 ) 1.2ii 列 電路左邊網(wǎng)孔KVL方程0得(0 )0.2Ai3( )A1.8A1+1/2i 所以(suy),響應為1.8( )( ) (0 )( )1.8(0.2 1.8)Atti tiiiee 0.56=1.8 1.6A(0)tet第47頁/共79頁第四十七頁,共80頁。第十章 線性電路過渡(gud)過程的時域分析換路前的穩(wěn)態(tài)電路(dinl)中的電流為例:圖示電路中,( )12100sin(30 )V,30,20,tSutRR 。換路前電路已達穩(wěn)態(tài),求在 時換路后的電感電流 。 0t i3=15, =0.1H, =1000rad/sRLmm1210

34、0 30=A=0.89433.4 Aj30+20+j1000 0.1SUIRRL( )0.894sin(33.4 )Ai tt(0 )(0 )0.894sin(33.4 )A=0.493Aii故電感(din n)電流初始值為解:1320.11ss/+30/15+20300LLRRRR第48頁/共79頁第四十八頁,共80頁。第十章 線性電路過渡過程(guchng)的時域分析換路后的穩(wěn)態(tài)電路(dinl)中的電流為( )0.319sin(43.3 )Aitt穩(wěn)態(tài)電流為其初始值為+(0 )0.319sin(43.3 )A=0.219Aim12m1231100 301j3020+j1000 0.1A11

35、1111j3020+j1000 0.115SURRLIRRLR0.31943.3 A換路后的電流(dinli)為+300300( )( ) (0 )(0 )0.319sin(43.3 ) 0.4930.219A0.319sin(43.3 )0.274Attti titiietete 第49頁/共79頁第四十九頁,共80頁。第十章 線性電路過渡過程(guchng)的時域分析10.5 10.5 階躍函數(shù)階躍函數(shù)(hnsh)(hnsh)和一階電路的階和一階電路的階躍響應躍響應一一 階躍函數(shù)階躍函數(shù)(hnsh)(hnsh)階躍幅度等于1階躍幅度等于k單位階躍函數(shù):是一種奇異函數(shù),其數(shù)學定義和波形如下階

36、躍函數(shù)階躍函數(shù)0, 10, 0)(ttt第50頁/共79頁第五十頁,共80頁。第十章 線性電路過渡過程(guchng)的時域分析階躍幅度等于k 單位階躍函數(shù)(hnsh)可以用來“起始”任意一個函數(shù)(hnsh) 延遲階躍函數(shù)延遲階躍函數(shù)000),(, 0)()(tttftttttf第51頁/共79頁第五十一頁,共80頁。第十章 線性電路過渡過程(guchng)的時域分析 單位(dnwi)階躍函數(shù)可以用來表示階梯波形)()()(0ttttf)()()(21ttkttktf第52頁/共79頁第五十二頁,共80頁。第十章 線性電路過渡(gud)過程的時域分析階躍函數(shù)在電路(dinl)中的作用階躍函數(shù)的

37、“起始”性在電路中表現(xiàn)為具有開關(kigun)特性,故又稱為開關(kigun)函數(shù)。( )Vt1V0t 例如,電路在 時接通到一個電壓為 的直流電壓源,則此換路動作可用階躍函數(shù)表示為 。第53頁/共79頁第五十三頁,共80頁。第十章 線性電路過渡過程(guchng)的時域分析二二 一階電路一階電路(dinl)(dinl)的階躍響應的階躍響應階躍(單位)響應:電路對(單位)階躍激勵的零狀態(tài)響應。把直流激勵(jl)下電路的零狀態(tài)響應中的激勵(jl)量改為階躍量,其響應就成為階躍響應。( )SUt例:RC串聯(lián)電路在階躍電壓 激勵下,電路的零狀態(tài)響應為(1) ( )tCSuUet第54頁/共79頁第五

38、十四頁,共80頁。第十章 線性電路過渡過程(guchng)的時域分析解:脈沖電壓(diny)可以分解為兩個階躍電壓(diny)之和,即例:求脈沖電壓 在 電路中產(chǎn)生的響應 。 RCCu( )p t12ppp0( )()SSUtUtt0120(1) ( )(1) ()tRCCSt tRCCSuUetuUet t兩個(lin )階躍響應分別為第55頁/共79頁第五十五頁,共80頁。第十章 線性電路過渡(gud)過程的時域分析0120(1) ( )(1) ()tRCCSt tRCCSuUetuUett 電路的零狀態(tài)(zhungti)響應為兩個階躍響應的疊加,即0120(1) ( )(1) ()t t

39、tRCRCCCCSSuuuUetUett第56頁/共79頁第五十六頁,共80頁。第十章 線性電路過渡過程(guchng)的時域分析RLC10.7 10.7 串聯(lián)電路的零輸入響應串聯(lián)電路的零輸入響應二階電路(dinl):可用二階微分方程描述的電路(dinl)。在二階電路中,給定的初始條件應有(yn yu)兩個,它們由儲能元件的初始值決定。RLC串聯(lián)電路是最典型的二階電路。一 方程和特征根 設各元件電壓與電流的參考方向如圖所示,換路后由KVL得0LRCuuu第57頁/共79頁第五十七頁,共80頁。第十章 線性電路過渡(gud)過程的時域分析其中(qzhng)ddCuiCt ddCRuuRiRCt

40、22dddd()ddddCCLuuiuLLCLCtttt 22dd0ddCCLCuuLCuRCutt代入方程(fngchng)中,得 二階常系數(shù)線性 齊次常微分方程 其特征方程為210LCpRCp 第58頁/共79頁第五十八頁,共80頁。第十章 線性電路過渡過程(guchng)的時域分析兩個(lin )特征根為21,21()22RRpLLLC 零輸入(shr)響應為1212p tp tCuAeA e 由初 始條件確定12AA、這里只分析電路的一種初始條件情況,即0(0 )(0 )(0 )(0 )(0 )0CCLLuuUiii兩個特征根僅與電路參數(shù)和結(jié)構(gòu)有關,與激勵無關。特征根的不同情況,響應的

41、形式也隨著不同。第59頁/共79頁第五十九頁,共80頁。第十章 線性電路過渡過程(guchng)的時域分析特征(tzhng)的三種情況2LRC振蕩放電過程2.臨界非振蕩放電過程2LRC3.2LRC二 ,非振蕩放電2LRC非振蕩放電過程1.21,21()22RRpLLLC 為兩個不相等的負實根兩個不相等的負實根,且 。12,p p12pp第60頁/共79頁第六十頁,共80頁。第十章 線性電路過渡(gud)過程的時域分析)(dd212211tptpCeApeApCtuCitptpCeAeAu2121方程(fngchng)通解:代入初條件(tiojin)得2102112021pAUpppAUpp 1

42、2011220AAUp Ap A0(0 )(0 )(0 )(0 )0CCuuUii)(2112120tptpCepepppUu電壓為第61頁/共79頁第六十一頁,共80頁。第十章 線性電路過渡(gud)過程的時域分析121201202121d()()d()p tp tp tp tCuUp piCCUeeeetppL pp )(dd2121120tptpLepepppUtiLu)(2112120tptpCepepppUu電路(dinl)響應為第62頁/共79頁第六十二頁,共80頁。第十章 線性電路過渡(gud)過程的時域分析響應過程:響應過程: 電容電壓和電流始終不改變電容電壓和電流始終不改變方

43、向,表明電容在整個過渡過程方向,表明電容在整個過渡過程中恒處于放電狀態(tài)中恒處于放電狀態(tài)(zhungti),其電壓單調(diào)地下降到零。其電壓單調(diào)地下降到零。 電流的初始值為零,穩(wěn)態(tài)值電流的初始值為零,穩(wěn)態(tài)值也為零,放電過程中電流必然要也為零,放電過程中電流必然要經(jīng)歷一次最大值。電流達最大值經(jīng)歷一次最大值。電流達最大值的時間發(fā)生在電感電壓為零的時的時間發(fā)生在電感電壓為零的時刻???。 電感電壓的初始值為電感電壓的初始值為U0,穩(wěn),穩(wěn)態(tài)值為零,在電流達到最大值時,態(tài)值為零,在電流達到最大值時,電感電壓為電感電壓為0。所以電感電壓必有。所以電感電壓必有一個負的最大值,發(fā)生在一個負的最大值,發(fā)生在2tm處。處。)ln(11221pppptm電流達到(d do)最大值的時間第63頁/共79頁第六十三頁,共80頁。第十章 線性電路過渡過程(guchng)的時域分析mtt mtt mtt 能量轉(zhuǎn)換情況能量轉(zhuǎn)換情況:在整個過渡過程中,電容一直釋放其電場能量。 以前,電流增加,電容釋放的能量除一部分被電阻消耗外,另有一部分轉(zhuǎn)變?yōu)殡姼械拇艌瞿芰俊?時電感儲能達到最大,電感電壓為零。 以后,電流減小,電感釋放其存儲的磁場能量,電容仍繼續(xù)放電,直到電場儲能和磁場儲能全部被電阻所耗盡,放電結(jié)束,。 在過渡過程中,電感的能量沒有回饋給

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論