八年級數(shù)學(xué)下冊 第十九章四邊形學(xué)案(無答案) 人教新課標(biāo)版_第1頁
八年級數(shù)學(xué)下冊 第十九章四邊形學(xué)案(無答案) 人教新課標(biāo)版_第2頁
八年級數(shù)學(xué)下冊 第十九章四邊形學(xué)案(無答案) 人教新課標(biāo)版_第3頁
八年級數(shù)學(xué)下冊 第十九章四邊形學(xué)案(無答案) 人教新課標(biāo)版_第4頁
八年級數(shù)學(xué)下冊 第十九章四邊形學(xué)案(無答案) 人教新課標(biāo)版_第5頁
已閱讀5頁,還剩42頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、第十九章 四邊形測試1 平行四邊形的性質(zhì)(一)學(xué)習(xí)要求1理解平行四邊形的概念,掌握平行四邊形的性質(zhì)定理;2能初步運(yùn)用平行四邊形的性質(zhì)進(jìn)行推理和計(jì)算,并體會如何利用所學(xué)的三角形的知識解決四邊形的問題課堂學(xué)習(xí)檢測一、填空題1兩組對邊分別_的四邊形叫做平行四邊形它用符號“”表示,平行四邊形ABCD記作_。2平行四邊形的兩組對邊分別_且_;平行四邊形的兩組對角分別_;兩鄰角_;平行四邊形的對角線_;平行四邊形的面積底邊長×_3在ABCD中,若AB40°,則A_,B_4若平行四邊形周長為54cm,兩鄰邊之差為5cm,則這兩邊的長度分別為_5若ABCD的對角線AC平分DAB,則對角線A

2、C與BD的位置關(guān)系是_6如圖,ABCD中,CEAB,垂足為E,如果A115°,則BCE_6題圖7如圖,在ABCD中,DBDC、A65°,CEBD于E,則BCE_7題圖8若在ABCD中,A30°,AB7cm,AD6cm,則SABCD_二、選擇題9如圖,將ABCD沿AE翻折,使點(diǎn)B恰好落在AD上的點(diǎn)F處,則下列結(jié)論不一定成立的是( )(A)AFEF(B)ABEF(C)AEAF(D)AFBE10如圖,下列推理不正確的是( )(A)ABCD ABCC180°(B)12 ADBC(C)ADBC 34(D)AADC180° ABCD11平行四邊形兩鄰邊分別

3、為24和16,若兩長邊間的距離為8,則兩短邊間的距離為( )(A)5(B)6(C)8(D)12綜合、運(yùn)用、診斷一、解答題12已知:如圖,ABCD中,DEAC于E,BFAC于F求證:DEBF13如圖,在ABCD中,ABC的平分線交CD于點(diǎn)E,ADE的平分線交AB于點(diǎn)F,試判斷AF與CE是否相等,并說明理由14已知:如圖,E、F分別為ABCD的對邊AB、CD的中點(diǎn)(1)求證:DEFB;(2)若DE、CB的延長線交于G點(diǎn),求證:CBBG15已知:如圖,ABCD中,E、F是直線AC上兩點(diǎn),且AECF求證:(1)BEDF;(2)BEDF拓展、探究、思考16已知:ABCD中,AB5,AD2,DAB120&

4、#176;,若以點(diǎn)A為原點(diǎn),直線AB為x軸,如圖所示建立直角坐標(biāo)系,試分別求出B、C、D三點(diǎn)的坐標(biāo)17某市要在一塊ABCD的空地上建造一個四邊形花園,要求花園所占面積是ABCD面積的一半,并且四邊形花園的四個頂點(diǎn)作為出入口,要求分別在ABCD的四條邊上,請你設(shè)計(jì)兩種方案:方案(1):如圖1所示,兩個出入口E、F已確定,請?jiān)趫D1上畫出符合要求的四邊形花園,并簡要說明畫法;圖1方案(2):如圖2所示,一個出入口M已確定,請?jiān)趫D2上畫出符合要求的梯形花園,并簡要說明畫法圖2測試2 平行四邊形的性質(zhì)(二)學(xué)習(xí)要求能綜合運(yùn)用所學(xué)的平行四邊形的概念和性質(zhì)解決簡單的幾何問題課堂學(xué)習(xí)檢測一、填空題1平行四邊形

5、一條對角線分一個內(nèi)角為25°和35°,則4個內(nèi)角分別為_2ABCD中,對角線AC和BD交于O,若AC8,BD6,則邊AB長的取值范圍是_3平行四邊形周長是40cm,則每條對角線長不能超過_cm4如圖,在ABCD中,AE、AF分別垂直于BC、CD,垂足為E、F,若EAF30°,AB6,AD10,則CD_;AB與CD的距離為_;AD與BC的距離為_;D_5ABCD的周長為60cm,其對角線交于O點(diǎn),若AOB的周長比BOC的周長多10cm,則AB_,BC_6在ABCD中,AC與BD交于O,若OA3x,AC4x12,則OC的長為_7在ABCD中,CAAB,BAD120&#

6、176;,若BC10cm,則AC_,AB_8在ABCD中,AEBC于E,若AB10cm,BC15cm,BE6cm,則ABCD的面積為_二、選擇題9有下列說法:平行四邊形具有四邊形的所有性質(zhì);平行四邊形是中心對稱圖形;平行四邊形的任一條對角線可把平行四邊形分成兩個全等的三角形;平行四邊形的兩條對角線把平行四邊形分成4個面積相等的小三角形其中正確說法的序號是( )(A)(B)(C)(D)10平行四邊形一邊長12cm,那么它的兩條對角線的長度可能是( )(A)8cm和16cm(B)10cm和16cm(C)8cm和14cm(D)8cm和12cm11以不共線的三點(diǎn)A、B、C為頂點(diǎn)的平行四邊形共有( )個

7、(A)1(B)2(C)3(D)無數(shù)12在ABCD中,點(diǎn)A1、A2、A3、A4和C1、C2、C3、C4分別是AB和CD的五等分點(diǎn),點(diǎn)B1、B2、和D1、D2分別是BC和DA的三等分點(diǎn),已知四邊形A4B2C4D2的面積為1,則ABCD的面積為( )(A)2(B)(C)(D)1513根據(jù)如圖所示的(1),(2),(3)三個圖所表示的規(guī)律,依次下去第n個圖中平行四邊形的個數(shù)是( )(1) (2) (3)(A)3n(B)3n(n1)(C)6n(D)6n(n1)綜合、運(yùn)用、診斷一、解答題14已知:如圖,在ABCD中,從頂點(diǎn)D向AB作垂線,垂足為E,且E是AB的中點(diǎn),已知ABCD的周長為8.6cm,ABD的

8、周長為6cm,求AB、BC的長15已知:如圖,在ABCD中,CEAB于E,CFAD于F,230°,求1、3的度數(shù)拓展、探究、思考16已知:如圖,O為ABCD的對角線AC的串點(diǎn),過點(diǎn)O作一條直線分別與AB、CD交于點(diǎn)M、N,點(diǎn)E、F在直線MN上,且OEOF(1)圖中共有幾對全等三角形?請把它們都寫出來;(2)求證:MAENCF17已知:如圖,在ABCD中,點(diǎn)E在AC上,AE2EC,點(diǎn)F在AB上,BF2AF,若BEF的面積為2cm2,求ABCD的面積測試3 平行四邊形的判定(一)學(xué)習(xí)要求初步掌握平行四邊形的判定定理課堂學(xué)習(xí)檢測一、填空題1平行四邊形的判定方法有:從邊的條件有:兩組對邊_的

9、四邊形是平行四邊形;兩組對邊_的四邊形是平行四邊形;一組對邊_的四邊形是平行四邊形從對角線的條件有:兩條對角線_的四邊形是平行四邊形從角的條件有:兩組對角_的四邊形是平行四邊形注意:一組對邊平行另一組對邊相等的四邊形_是平行四邊形(填“一定”或“不一定”)2四邊形ABCD中,若AB180°,CD180°,則這個四邊形_(填“是”、“不是”或“不一定是”)平行四邊形3一個四邊形的邊長依次為a、b、c、d,且滿足a2b2c2d22ac2bd,則這個四邊形為_4四邊形ABCD中,AC、BD為對角線,AC、BD相交于點(diǎn)O,BO4,CO6,當(dāng)AO_,DO_時,這個四邊形是平行四邊形5

10、如圖,四邊形ABCD中,當(dāng)12,且_時,這個四邊形是平行四邊形二、選擇題6下列命題中,正確的是( )(A)兩組角相等的四邊形是平行四邊形(B)一組對邊相等,兩條對角線相等的四邊形是平行四邊形(C)一條對角線平分另一條對角線的四邊形是平行四邊形(D)兩組對邊分別相等的四邊形是平行四邊形7已知:園邊形ABCD中,AC與BD交于點(diǎn)O,如果只給出條件“ABCD”,那么還不能判定四邊形ABCD為平行四邊形,給出以下四種說法:如果再加上條件“BCAD”,那么四邊形ABCD一定是平行四邊形;如果再加上條件“BADBCD”,那么四邊形ABCD一定是平行四邊形;如果再加上條件“OAOC”,那么四邊形ABCD一定

11、是平行四邊形;如果再加上條件“DBACAB”,那么四邊形ABCD一定是平行四邊形其中正確的說法是( )(A)(B)(C)(D)8能確定平行四邊形的大小和形狀的條件是( )(A)已知平行四邊形的兩鄰邊(B)已知平行四邊形的相鄰兩角(C)已知平行四邊形的兩對角線(D)已知平行四邊形的一邊、一對角線和周長綜合、運(yùn)用、診斷一、解答題9如圖,在ABCD中,E、F分別是邊AB、CD上的點(diǎn),已知AECF,M、N是DE和FB的中點(diǎn),求證:四邊形ENFM是平行四邊形10如圖,在ABCD中,E、F分別是邊AD、BC上的點(diǎn),已知AECF,AF與BE相交于點(diǎn)G,CE與DF相交于點(diǎn)H,求證:四邊形EGFH是平行四邊形1

12、1如圖,在ABCD中,E、F分別在邊BA、DC的延長線上,已知AECF,P、Q分別是DE和FB的中點(diǎn),求證:四邊形EQFP是平行四邊形12如圖,在ABCD中,E、F分別在DA、BC的延長線上,已知AECF,F(xiàn)A與BE的延長線相交于點(diǎn)R,EC與DF的延長線相交于點(diǎn)S,求證:四邊形RESF是平行四邊形13已知:如圖,四邊形ABCD中,ABDC,ADBC,點(diǎn)E在BC上,點(diǎn)F在AD上,AFCE,EF與對角線BD交于點(diǎn)O,求證:O是BD的中點(diǎn)14已知:如圖,ABC中,D是AC的中點(diǎn),E是線段BC延長線上一點(diǎn),過點(diǎn)A作BE的平行線與線段ED的延長線交于點(diǎn)F,連結(jié)AE、CF求證:CFAE.拓展、探究、思考1

13、5已知:如圖,ABC,D是AB的中點(diǎn),E是AC上一點(diǎn),EFAB,DFBE(1)猜想DF與AE的關(guān)系;(2)證明你的猜想16用兩個全等的不等邊三角形ABC和三角形ABC(如圖),可以拼成幾個不同的四邊形?其中有幾個是平行四邊形?請分別畫出相應(yīng)的圖形加以說明測試4 平行四邊形的判定(二)學(xué)習(xí)要求進(jìn)一步掌握平行四邊形的判定方法課堂學(xué)習(xí)檢測一、填空題1如圖,ABCD中,CEDF,則四邊形ABEF是_1題圖2如圖,ABCD,EFAB,GHAD,MNAD,圖中共有_個平行四邊形2題圖3已知三條線段長分別為10,14,20,以其中兩條為對角線,其余一條為邊可以畫出_個平行四邊形4已知三條線段長分別為7,15

14、,20,以其中一條為對角線,另兩條為鄰邊,可以畫出_個平行四邊形5已知:如圖,四邊形AEFD和EBCF都是平行四邊形,則四邊形ABCD是_5題圖二、選擇題6能判定一個四邊形是平行四邊形的條件是( )(A)一組對邊平行,另一組對邊相等(B)一組對邊平行,一組對角互補(bǔ)(C)一組對角相等,一組鄰角互補(bǔ)(D)一組對角相等,另一組對角互補(bǔ)7能判定四邊形ABCD是平行四邊形的題設(shè)是( )(A)ADBC,ABCD(B)AB,CD(C)ABBC,ADDC(D)ABCD,CDAB8能判定四邊形ABCD是平行四邊形的條件是:ABCD的值為( )(A)1234(B)1423(C)1221(D)12129如圖,E、F

15、分別是ABCD的邊AB、CD的中點(diǎn),則圖中平行四邊形的個數(shù)共有( )(A)2個(B)3個(C)4個(D)5個10ABCD的對角線的交點(diǎn)在坐標(biāo)原點(diǎn),且AD平行于x軸,若A點(diǎn)坐標(biāo)為(1,2),則C點(diǎn)的坐標(biāo)為( )(A)(1,2)(B)(2,1)(C)(1,3)(D)(2,3)11如圖,ABCD中,對角線AC、BD交于點(diǎn)O,將AOD平移至BEC的位置,則圖中與OA相等的其他線段有( )(A)1條(B)2條(C)3條(D)4條綜合、運(yùn)用、診斷一、解答題12已知:如圖,在ABCD中,點(diǎn)E、F在對角線AC上,且AECF請你以F為一個端點(diǎn),和圖中已標(biāo)明字母的某一點(diǎn)連成一條新線段,猜想并證明它和圖中已有的某一

16、條線段相等(只需證明一組線段相等即可)(1)連結(jié)_;(2)猜想:_;(3)證明:13如圖,在ABC中,EF為ABC的中位線,D為BC邊上一點(diǎn)(不與B、C重合),AD與EF交于點(diǎn)O,連結(jié)EF、DF,要使四邊形AEDF為平行四邊形,需要添加條件_(只添加一個條件)證明:14已知:如圖,ABC中,ABAC10,D是BC邊上的任意一點(diǎn),分別作DFAB交AC于F,DEAC交AB于E,求DEDF的值15已知:如圖,在等邊ABC中,D、F分別為CB、BA上的點(diǎn),且CDBF,以AD為邊作等邊三角形ADE求證:(1)ACDCBF;(2)四邊形CDEF為平行四邊形拓展、探究、思考16若一次函數(shù)y2x1和反比例函數(shù)

17、的圖象都經(jīng)過點(diǎn)(1,1)(1)求反比例函數(shù)的解析式;(2)已知點(diǎn)A在第三象限,且同時在兩個函數(shù)的圖象上,利用圖象求點(diǎn)A的坐標(biāo);(3)利用(2)的結(jié)果,若點(diǎn)B的坐標(biāo)為(2,0),且以點(diǎn)A、O、B、P為頂點(diǎn)的四邊形是平行四邊形,請你直接寫出點(diǎn)P的坐標(biāo)17如圖,點(diǎn)A(m,m1),B(m3,m1)在反比例函數(shù)的圖象上(1)求m,k的值;(2)如果M為x軸上一點(diǎn),N為y軸上一點(diǎn),以點(diǎn)A,B,M,N為頂點(diǎn)的四邊形是平行四邊形,試求直線MN的函數(shù)表達(dá)式測試5 平行四邊形的性質(zhì)與判定學(xué)習(xí)要求能綜合運(yùn)用平行四邊形的判定定理和平行四邊形的性質(zhì)定理進(jìn)行證明和計(jì)算課堂學(xué)習(xí)檢測一、填空題:1平行四邊形長邊是短邊的2倍,

18、一條對角線與短邊垂直,則這個平行四邊形各角的度數(shù)分別為_2從平行四邊形的一個銳角頂點(diǎn)作兩條高線,如果這兩條高線夾角為135°,則這個平行四邊形的各內(nèi)角的度數(shù)為_3在ABCD中,BC2AB,若E為BC的中點(diǎn),則AED_4在ABCD中,如果一邊長為8cm,一條對角線為6cm,則另一條對角線x的取值范圍是_5ABCD中,對角線AC、BD交于O,且ABAC2cm,若ABC60°,則OAB的周長為_cm6如圖,在ABCD中,M是BC的中點(diǎn),且AM9,BD12,AD10,則ABCD的面積是_7ABCD中,對角線AC、BD交于點(diǎn)O,若BOC120°AD7,BD10,則ABCD的

19、面積為_8如圖,在ABCD中,AB6,AD9,BAD的平分線交BC于點(diǎn)E,交DC的延長線于點(diǎn)F,BGAE,垂足為G,AF5,則CEF的周長為_9如圖,BD為ABCD的對角線,M、N分別在AD、AB上,且MNBD,則SDMC_SBNC(填“”、“”或“”)綜合、運(yùn)用、診斷一、解答題10已知:如圖,EFC中,A是EF邊上一點(diǎn),ABEC,ADFC,若EADFABABa,ADb(1)求證:EFC是等腰三角形;(2)求ECFC11已知:如圖,ABC中,ABC90°,BDAC于D,AE平分BAC,EFDC,交BC于F求證:BEFC12已知:如圖,在ABCD中,E為AD的中點(diǎn),CE、BA的延長線交

20、于點(diǎn)F若BC2CD,求證:FBCF13如圖,已知:在ABCD中,A60°,E、F分別是AB、CD的中點(diǎn),且AB2AD求證:BFBD3拓展、探究、思考14如圖1,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點(diǎn)M(2,1),且P(1,2)是雙曲線上的一點(diǎn),Q為坐標(biāo)平面上一動點(diǎn),PA垂直于x軸,QB垂直于y軸,垂足分別是A、B圖1(1)寫出正比例函數(shù)和反比例函數(shù)的關(guān)系式;(2)當(dāng)點(diǎn)Q在直線MO上運(yùn)動時,直線MO上是否存在這樣的點(diǎn)Q,使得OBQ與OAP面積相等?如果存在,請求出點(diǎn)的坐標(biāo),如果不存在,請說明理由;(3)如圖2,當(dāng)點(diǎn)Q在第一象限中的雙曲線上運(yùn)動時,作以O(shè)P、OQ為鄰邊的平行四邊形OPC

21、Q,求平行四邊形OPCQ周長的最小值圖2測試6 三角形的中位線學(xué)習(xí)要求理解三角形的中位線的概念,掌握三角形的中位線定理課堂學(xué)習(xí)檢測一、填空題:1(1)三角形的中位線的定義:連結(jié)三角形兩邊_叫做三角形的中位線(2)三角形的中位線定理是三角形的中位線_第三邊,并且等于_2如圖,ABC的周長為64,E、F、G分別為AB、AC、BC的中點(diǎn),A、B、C分別為EF、EG、GF的中點(diǎn),ABC的周長為_如果ABC、EFG、ABC分別為第1個、第2個、第3個三角形,按照上述方法繼續(xù)作三角形,那么第n個三角形的周長是_3ABC中,D、E分別為AB、AC的中點(diǎn),若DE4,AD3,AE2,則ABC的周長為_二、解答題

22、4已知:如圖,四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn)求證:四邊形EFGH是平行四邊形5已知:ABC的中線BD、CE交于點(diǎn)O,F(xiàn)、G分別是OB、OC的中點(diǎn)求證:四邊形DEFG是平行四邊形綜合、運(yùn)用、診斷6已知:如圖,E為ABCD中DC邊的延長線上的一點(diǎn),且CEDC,連結(jié)AE分別交BC、BD于點(diǎn)F、G,連結(jié)AC交BD于O,連結(jié)OF求證:AB2OF7已知:如圖,在ABCD中,E是CD的中點(diǎn),F(xiàn)是AE的中點(diǎn),F(xiàn)C與BE交于G求證:GFGC8已知:如圖,在四邊形ABCD中,ADBC,E、F分別是DC、AB邊的中點(diǎn),F(xiàn)E的延長線分別與AD、BC的延長線交于H、G點(diǎn)求證:AHFB

23、GF拓展、探究、思考9已知:如圖,ABC中,D是BC邊的中點(diǎn),AE平分BAC,BEAE于E點(diǎn),若AB5,AC7,求ED10如圖在ABC中,D、E分別為AB、AC上的點(diǎn),且BDCE,M、N分別是BE、CD的中點(diǎn)過MN的直線交AB于P,交AC于Q,線段AP、AQ相等嗎?為什么?測試7 矩 形學(xué)習(xí)要求理解矩形的概念,掌握矩形的性質(zhì)定理與判定定理課堂學(xué)習(xí)檢測一、填空題1(1)矩形的定義:_的平行四邊形叫做矩形(2)矩形的性質(zhì):矩形是一個特殊的平行四邊形,它除了具有四邊形和平行四邊形所有的性質(zhì),還有:矩形的四個角_;矩形的對角線_;矩形是軸對稱圖形,它的對稱軸是_(3)矩形的判定:一個角是直角的_是矩形

24、;對角線_的平行四邊形是矩形;有_個角是直角的四邊形是矩形2矩形ABCD中,對角線AC、BD相交于O,AOB60°,AC10cm,則AB_cm,BC_cm3在ABC中,C90°,AC5,BC3,則AB邊上的中線CD_4如圖,四邊形ABCD是一張矩形紙片,AD2AB,若沿過點(diǎn)D的折痕DE將A角翻折,使點(diǎn)A落在BC上的A1處,則EA1B_°。5如圖,矩形ABCD中,AB2,BC3,對角線AC的垂直平分線分別交AD,BC于點(diǎn)E、F,連結(jié)CE,則CE的長_二、選擇題6下列命題中不正確的是( )(A)直角三角形斜邊中線等于斜邊的一半(B)矩形的對角線相等(C)矩形的對角線互

25、相垂直(D)矩形是軸對稱圖形7若矩形對角線相交所成鈍角為120°,短邊長3.6cm,則對角線的長為( )(A)3.6cm(B)7.2cm(C)1.8cm(D)14.4cm8矩形鄰邊之比34,對角線長為10cm,則周長為( )(A)14cm(B)28cm(C)20cm(D)22cm9已知AC為矩形ABCD的對角線,則圖中1與2一定不相等的是( )(A)(B)(C)(D)綜合、運(yùn)用、診斷一、解答題10已知:如圖,ABCD中,AC與BD交于O點(diǎn),OABOBA(1)求證:四邊形ABCD為矩形;(2)作BEAC于E,CFBD于F,求證:BECF11如圖,在ABC中,D是BC邊上的一點(diǎn),E是AD

26、的中點(diǎn),過點(diǎn)A作BC的平行線交BE的延長線于F,且AFDC,連結(jié)CF(1)求證:D是BC的中點(diǎn);(2)如果ABAC,試猜測四邊形ADCF的形狀,并證明你的結(jié)論12如圖,矩形ABCD中,AB6cm,BC8cm,若將矩形折疊,使點(diǎn)B與D重合,求折痕EF的長。13已知:如圖,在矩形ABCD中,E、F分別是邊BC、AB上的點(diǎn),且EFED,EFED求證:AE平分BAD拓展、探究、思考14如圖,在矩形ABCD中,AB2,(1)在邊CD上找一點(diǎn)E,使EB平分AEC,并加以說明;(2)若P為BC邊上一點(diǎn),且BP2CP,連結(jié)EP并延長交AB的延長線于F求證:ABBF;PAE能否由PFB繞P點(diǎn)按順時針方向旋轉(zhuǎn)而得

27、到?若能,加以證明,并寫出旋轉(zhuǎn)度數(shù);若不能,請說明理由。測試8 菱 形學(xué)習(xí)要求理解菱形的概念,掌握菱形的性質(zhì)定理及判定定理課堂學(xué)習(xí)檢測一、填空題:1菱形的定義:_的平行四邊形叫做菱形2菱形的性質(zhì):菱形是特殊的平行四邊形,它具有四邊形和平行四邊形的_:還有:菱形的四條邊_;菱形的對角線_,并且每一條對角線平分_;菱形的面積等于_,它的對稱軸是_3菱形的判定:一組鄰邊相等的_是菱形;四條邊_的四邊形是菱形;對角線_的平行四邊形是菱形4已知菱形的周長為40cm,兩個相鄰角度數(shù)之比為12,則較長對角線的長為_cm5若菱形的兩條對角線長分別是6cm,8cm,則它的周長為_cm,面積為_cm2二、選擇題6

28、對角線互相垂直平分的四邊形是( )(A)平行四邊形(B)矩形(C)菱形(D)任意四邊形7順次連結(jié)對角線相等的四邊形各邊中點(diǎn),所得四邊形是( )(A)矩形(B)平行四邊形(C)菱形(D)任意四邊形8下列命題中,正確的是( )(A)兩鄰邊相等的四邊形是菱形(B)一條對角線平分一個內(nèi)角的平行四邊形是菱形(C)對角線垂直且一組鄰邊相等的四邊形是菱形(D)對角線垂直的四邊形是菱形9如圖,在菱形ABCD中,E、F分別是AB、AC的中點(diǎn),如果EF2,那么菱形ABCD的周長是( )(A)4(B)8(C)12(D)1610菱形ABCD中,AB15,若周長為8,則此菱形的高等于( )(A)(B)4(C)1(D)2

29、綜合、運(yùn)用、診斷一、解答題11如圖,在菱形ABCD中,E是AB的中點(diǎn),且DEAB,AB4求:(1)ABC的度數(shù);(2)菱形ABCD的面積12如圖,在菱形ABCD中,ABC120°,E是AB邊的中點(diǎn),P是AC邊上一動點(diǎn),PBPE的最小值是,求AB的值13如圖,在ABCD中,E,F(xiàn)分別為邊AB,CD的中點(diǎn),連結(jié)DE,BF,BD(1)求證:ADECBF(2)若ADBD,則四邊形BFDE是什么特殊四邊形?請證明你的結(jié)論14如圖,四邊形ABCD中,ABCD,AC平分BAD,CEAD交AB于E(1)求證:四邊形AECD是菱形;(2)若點(diǎn)E是AB的中點(diǎn),試判斷ABC的形狀,并說明理由15如圖,AB

30、CD中,ABAC,AB1,BC對角線AC,BD相交于點(diǎn)O,將直線AC繞點(diǎn)O順時針旋轉(zhuǎn),分別交BC,AD于點(diǎn)E,F(xiàn)(1)證明:當(dāng)旋轉(zhuǎn)角為90°時,四邊形ABEF是平行四邊形;(2)試說明在旋轉(zhuǎn)過程中,線段AF與EC總保持相等;(3)在旋轉(zhuǎn)過程中,四邊形BEDF可能是菱形嗎?如果不能,請說明理由;如果能,畫出圖形并寫出此時AC繞點(diǎn)O順時針旋轉(zhuǎn)的度數(shù)16如圖,菱形ABCD的邊長為2,BD2,E、F分別是邊AD,CD上的兩個動點(diǎn),且滿足AECF2(1)求證:BDEBCF;(2)判斷BEF的形狀,并說明理由;(3)設(shè)BEF的面積為S,求S的取值范圍拓展、探究、思考17請用兩種不同的方法,在所給

31、的兩個矩形中各畫一個不為正方形的菱形,且菱形的四個頂點(diǎn)都在矩形的邊上(保留作圖痕跡)18如圖,菱形AB1C1D1的邊長為1,B160°;作AD2B1C1于點(diǎn)D2,以AD2為一邊,作第二個菱形AB2C2D2,使B260°;作AD3B2C2于點(diǎn)D3,以AD3為一邊,作第三個菱形AB3C3D3,使B360°;依此類推,這樣作的第n個菱形ABnCnDn的邊ADn的長是_測試9 正方形學(xué)習(xí)要求1理解正方形的概念,了解平行四邊形、矩形及菱形與正方形的概念之間的從屬關(guān)系;2掌握正方形的性質(zhì)及判定方法課堂學(xué)習(xí)檢測一、填空題1正方形的定義:有一組鄰邊_并且有一個角是_的平行四邊形叫

32、做正方形,因此正方形既是一個特殊的有一組鄰邊相等的_,又是一個特殊的有一個角是直角的_2正方形的性質(zhì):正方形具有四邊形、平行四邊形、矩形、菱形的一切性質(zhì),正方形的四個角都_;四條邊都_且_;正方形的兩條對角線_,并且互相_,每條對角線平分_對角它有_條對稱軸3正方形的判定:(1)_的平行四邊形是正方形;(2)_的矩形是正方形;(3)_的菱形是正方形;4對角線_的四邊形是正方形5若正方形的邊長為a,則其對角線長為_,若正方形ACEF的邊是正方形ABCD的對角線,則正方形ACEF與正方形ABCD的面積之比等于_6延長正方形ABCD的BC邊至點(diǎn)E,使CEAC,連結(jié)AE,交CD于F,那么AFC的度數(shù)為

33、_,若BC4cm,則ACE的面積等于_7在正方形ABCD中,E為BC上一點(diǎn),EFAC,EGBD,垂足分別為F、G,如果,那么EFEG的長為_二、選擇題8如圖,將一邊長為12的正方形紙片ABCD的頂點(diǎn)A折疊至DC邊上的點(diǎn)E,使DE5,折痕為PQ,則PQ的長為( )(A)12(B)13(C)14(D)159如圖,正方形ABCD的邊長為4cm,則圖中陰影部分的面積為( )cm2(A)6(B)8(C)16(D)不能確定綜合、運(yùn)用、診斷一、解答題10已知:如圖,正方形ABCD中,點(diǎn)E、M、N分別在AB、BC、AD邊上,CEMN,MCE35°,求ANM的度數(shù)11已知:如圖,E是正方形ABCD對角

34、線AC上一點(diǎn),且AEAB,EFAC,交BC于F求證:BFEC12如圖,邊長為3的正方形ABCD繞點(diǎn)C按順時針方向旋轉(zhuǎn)30°后,得到正方形EFCG,EF交AD于H,求DH的長13如圖,P為正方形ABCD的對角線上任一點(diǎn),PEAB于E,PFBC于F,判斷DP與EF的關(guān)系,并證明拓展、探究、思考14如圖,在邊長為4的正方形ABCD中,點(diǎn)P在AB上從A向B運(yùn)動,連結(jié)DP交AC于點(diǎn)Q(1)試證明:無論點(diǎn)P運(yùn)動到AB上何處時,都有ADQABQ;(2)當(dāng)點(diǎn)P在AB上運(yùn)動到什么位置時,ADQ的面積是正方形ABCD面積的;(3)若點(diǎn)P從點(diǎn)A運(yùn)動到點(diǎn)B,再繼續(xù)在BC上運(yùn)動到點(diǎn)C,在整個運(yùn)動過程中,當(dāng)點(diǎn)P

35、運(yùn)動到什么位置時,ADQ恰為等腰三角形測試10 梯形(一)學(xué)習(xí)要求1理解梯形的有關(guān)概念,理解直角梯形和等腰梯形的概念2掌握等腰梯形的性質(zhì)和判定3初步掌握研究梯形問題時添加輔助線的方法,使問題進(jìn)行轉(zhuǎn)化課堂學(xué)習(xí)檢測一、填空題1梯形有關(guān)概念:一組對邊平行而另一組對邊_的四邊形叫做梯形,梯形中平行的兩邊叫做底,按_分別叫做上底、下底(與位置無關(guān)),梯形中不平行的兩邊叫做_,兩底間的_叫做梯形的高一腰垂直于底邊的梯形叫做_;兩腰_的梯形叫做等腰梯形2等腰梯形的性質(zhì):等腰梯形中_的兩個角相等,兩腰_,兩對角線_,等腰梯形是軸對稱圖形,只有一條對稱軸,_就是它的對稱軸3等腰梯形的判定:_的梯形是等腰梯形;同

36、一底上的兩個角_的梯形是等腰梯形4如果等腰梯形兩底差的一半等于它的高,那么此梯形較小的一個底角等于_度5等腰梯形上底長為3cm,腰長為4cm,其中銳角等于60°,則下底長是_6如圖,梯形ABCD中,ADBC,ABCDAD1,B60°,直線MN為梯形ABCD的對稱軸,P為MN上一點(diǎn),那么PCPD的最小值為_二、選擇題7課外活動時,王老師讓同學(xué)們做一個對角線互相垂直的等腰梯形形狀的風(fēng)箏,其面積為450cm2,則兩條對角線所用的竹條至少需( )(A)(B)30cm(C)60cm(D)8如圖,梯形ABCD中,ADBC,B30°,BCD60°,AD2,AC平分BC

37、D,則BC長為( )8題圖(A)4(B)6(C)(D)9如圖,ABCD是用12個全等的等腰梯形鑲嵌成的圖形,這個圖形中等腰梯形的上底長與下底長的比是( )9題圖(A)12(B)23(C)35(D)47綜合、運(yùn)用、診斷一、解答題10已知:如圖,梯形ABCD中,ADBC,ABCD,延長CB到E,使EBAD,連結(jié)AE求證:AECA11如圖,在梯形ABCD中,ABDC,DB平分ADC,過點(diǎn)A作AEBD,交CD的延長線于點(diǎn)E,且C2E(1)求證:梯形ABCD是等腰梯形;(2)若BDC30°,AD5,求CD的長12如圖,在梯形ABCD中,ADBC,ABDCAD,C60°,AEBD于點(diǎn)E

38、,AE1,求梯形ABCD的高拓展、探究、思考一、解答題13如圖,等腰梯形ABCD中,ADBC,M、N分別是AD,BC的中點(diǎn),E,F(xiàn)分別是BM,CM的中點(diǎn)(1)求證:四邊形MENF是菱形;(2)若四邊形MENF是正方形,請?zhí)剿鞯妊菪蜛BCD的高和底邊BC的數(shù)量關(guān)系,并證明你的結(jié)論14如圖,在RtABC中,ACB90°,B60°,BC2點(diǎn)O是AC的中點(diǎn),過點(diǎn)O的直線l從與AC重合的位置開始,繞點(diǎn)O作逆時針旋轉(zhuǎn),交AB邊于點(diǎn)D過點(diǎn)C作CEAB交直線l于點(diǎn)E,設(shè)直線l的旋轉(zhuǎn)角為a (備用圖)(1)當(dāng)a_°時,四邊形EDBC是等腰梯形,此時AD的長為_;當(dāng)a_°

39、時,四邊形EDBC是直角梯形,此時AD的長為_;(2)當(dāng)a90°時,判斷四邊形EDBC是否為菱形,并說明理由測試11 梯形(二)學(xué)習(xí)要求熟練運(yùn)用所學(xué)的知識解決梯形問題課堂學(xué)習(xí)檢測一、回答下列問題1梯形問題通常是通過分割和拼接轉(zhuǎn)化為三角形或平行四邊形,其分割拼接的方法有如下幾種(如圖):(1)平移一腰,即從梯形的一個頂點(diǎn)_,把梯形分成一個平行四邊形和一個三角形(圖1所示);圖1(2)從同一底的兩端_,把梯形分成一個矩形和兩個直角三角形(圖2所示);圖2(3)平移對角線,即過底的一端_,可以借助新得的平行四邊形或三角形來研究梯形(圖3所示);圖3(4)延長梯形的兩腰_,得到兩個三角形,如

40、果梯形是等腰梯形,則得到兩個等腰三角形(圖4所示);圖4(5)以梯形一腰的中點(diǎn)為_,作某圖形的中心對稱圖形(圖5、圖6所示); 圖5 圖6(6)以梯形一腰為_,作梯形的軸對稱圖形(圖7所示)圖7二、填空題2等腰梯形ABCD中,ADBC,若AD3,AB4,BC7,則B_3如圖,直角梯形ABCD中,ABCD,CBAB,ABD是等邊三角形,若AB2,則BC_4在梯形ABCD中,ADBC,AD5,BC7,若E為DC的中點(diǎn),射線AE交BC的延長線于F點(diǎn),則BF_三、選擇題5梯形ABCD中,ADBC,若對角線ACBD,且AC5cm,BD12cm,則梯形的面積等于( )(A)30cm2(B)60cm2(C)

41、90cm2(D)169cm26如圖,等腰梯形ABCD中,ABCD,對角線AC平分BAD,B60°,CD2,則梯形ABCD的面積是( )(A)(B)6(C)(D)127等腰梯形ABCD中,ABCD,ADBC8,AB10,CD6,則梯形ABCD的面積是( )(A)(B)(C)(D)綜合、運(yùn)用、診斷一、解答題8已知:如圖,等腰梯形ABCD中,ADBC,對角線ACBCAD求DBC的度數(shù)9已知,等腰梯形ABCD中,ADBC,ABC60°,ACBD,AB4cm,求梯形ABCD的周長10如圖,在梯形ABCD中,ADBC,B90°,C45°,AD1,BC4,E為AB中點(diǎn)

42、,EFDC交BC于點(diǎn)F,求EF的長11如圖,在梯形ABCD中,ADBC,ABAC,B45°,AD,BC4,求DC的長拓展、探究、思考一、解答題12如圖,梯形紙片ABCD中,ADBC且ABDC設(shè)ADa,BCb過AD中點(diǎn)和BC中點(diǎn)的直線可將梯形紙片ABCD分成面積相等的兩部分請你再設(shè)計(jì)一種方法:只需用剪子一次就可將梯形紙片ABCD分割成面積相等的兩部分,畫出設(shè)計(jì)的圖形并簡要說明你的分割方法13(1)探究新知:如圖,已知ABC與ABD的面積相等,試判斷AB與CD的位置關(guān)系,并說明理由(2)結(jié)論應(yīng)用:如圖,點(diǎn)M,N在反比例函數(shù)的圖象上,過點(diǎn)M作MEy軸,過點(diǎn)N作NFx軸,垂足分別為E,F(xiàn)試證

43、明:MNEF若中的其他條件不變,只改變點(diǎn)M,N的位置,如圖所示請判斷MN與EF是否平行參考答案第十九章 四邊形測試1 平行四邊形的性質(zhì)(一)1平行,ABCD 2平行,相等;相等;互補(bǔ);互相平分;底邊上的高3110°,70° 4.16cm,11cm 5互相垂直 625°725° 821cm29D 10C 11C12提示:可由ADECBF推出 13提示:可由ADFCBE推出14(1)提示:可證AEDCFB;(2)提示:可由GEBDEA推出,15提示:可先證ABECDF(三)16B(5,0) C(4,)D(1,)17方案(1)畫法1:(1)過F作FHAB交AD

44、于點(diǎn)H(2)在DC上任取一點(diǎn)G連接EF,F(xiàn)G,GH,HE,則四邊形EFGH就是所要畫的四邊形;畫法2:(1)過F作FHAB交AD于點(diǎn)H(2)過E作EGAD交DC于點(diǎn)G連接EF,F(xiàn)G,GH,HE,則四邊形EFGH就是所要畫的四邊形畫法3:(1)在AD上取一點(diǎn)H,使DHCF(2)在CD上任取一點(diǎn)G連接EF,F(xiàn)G,GH,HE,則四邊形EFGH就是所要畫的四邊形方案(2)畫法:(1)過M點(diǎn)作MPAB交AD于點(diǎn)P,(2)在AB上取一點(diǎn)Q,連接PQ,(3)過M作MNPQ交DC于點(diǎn)N,連接QM,PN則四邊形QMNP就是所要畫的四邊形測試2 平行四邊形的性質(zhì)(二)160°、120°、60&

45、#176;、120° 21AB7 32046,5,3,30° 520cm,10cm 618提示:AC2AO.75cm,5cm 8120cm29D; 10B 11C 12C 13B14AB2.6cm,BC1.7cm提示:由已知可推出ADBDBC設(shè)BCxcm,ABycm,則 解得15160°,330°16(1)有4對全等三角形分別為AOMCON,AOECOF,AMECNF,ABCCDA(2)證明:OAOC,12,OEOF,OAEOCFEAOFCO又在ABCD中,ABCD,BAODCOEAMNCF179測試3 平行四邊形的判定(一)1分別平行; 分別相等; 平

46、行且相等;互相平分; 分別相等;不一定;2不一定是3平行四邊形提示:由已知可得(ac)2(bd)20,從而46,4; 5AD,BC6D 7C 8D9提示:先證四邊形BFDE是平行四邊形,再由EMNF得證10提示:先證四邊形AFCE、四邊形BFDE是平行四邊形,再由GEFH,GFEH得證11提示:先證四邊形EBFD是平行四邊形,再由EPQF得證12提示:先證四邊形EBFD是平行四邊形,再證REASFC,既而得到RESF13提示:連結(jié)BF,DE,證四邊形BEDF是平行四邊形14提示:證四邊形AFCE是平行四邊形15提示:(1)DF與AE互相平分;(2)連結(jié)DE,AF證明四邊形ADEF是平行四邊形1

47、6可拼成6個不同的四邊形,其中有三個是平行四邊形拼成的四邊形分別如下: 測試4 平行四邊形的判定(二)1平行四邊形 218 32 43 5平行四邊形6C 7D 8D 9C 10A 11B12(1)BF(或DF); (2)BFDE(或BEDF);(3)提示:連結(jié)DF(或BF),證四邊形DEBF是平行四邊形13提示:D是BC的中點(diǎn)14DEDF1015提示:(1)ABC為等邊三角形,ACCB,ACDCBF60°又CDBF,ACDCBF(2)ACDCBF,ADCF,CADBCFAED為等邊三角形,ADE60°,且ADDEFCDEEDB60°BDACADACDBCF60°,EDBBCFEDFCEDFC,四邊形CDEF為平行四邊形.16(1);(2); (3)P1(1.5,2),P2(2.5,2)或P3(2.5,2)17(1)m3,k12;(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論