有機(jī)小分子太陽能電池和無機(jī)有機(jī)雜化太陽能電池的研究_第1頁
有機(jī)小分子太陽能電池和無機(jī)有機(jī)雜化太陽能電池的研究_第2頁
有機(jī)小分子太陽能電池和無機(jī)有機(jī)雜化太陽能電池的研究_第3頁
有機(jī)小分子太陽能電池和無機(jī)有機(jī)雜化太陽能電池的研究_第4頁
有機(jī)小分子太陽能電池和無機(jī)有機(jī)雜化太陽能電池的研究_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、論文中英文摘要格式作者姓名:單美娜論文題目:有機(jī)小分子太陽能電池和無機(jī)有機(jī)雜化太陽能電池的研究作者簡介:單美娜,女,1982年 05月出生,2006年 09 月師從于內(nèi)蒙古大學(xué)黃春輝院士,于2009年 07月獲博士(碩士)學(xué)位。中文摘要隨著經(jīng)濟(jì)的發(fā)展、人口的增加和社會生活水平的提高,未來世界能源消費(fèi)量將持續(xù)增長,世界上的化石能源消費(fèi)總量總有一天將會到達(dá)極限。能源問題的日益嚴(yán)重,讓人們認(rèn)識到了尋求可再生能源的迫切性,同時(shí)由于傳統(tǒng)能源燃燒時(shí)產(chǎn)生的廢氣極大的危害了人類的生存環(huán)境,也使人們認(rèn)識到無污染能源的重要性。 太陽能資源開發(fā)利用的潛力非常廣闊。而利用太陽能的重要途徑之一,就是研制太陽能電池。近年

2、來,太陽能電池作為利用太陽能源的重要途徑之一,已經(jīng)引起了人們的廣泛關(guān)注。將太陽能直接轉(zhuǎn)換成電能是一種理想的能源使用模式。太陽能電池的使用不產(chǎn)生噪音、二氧化碳和其它有害氣體;對它的維護(hù)費(fèi)用也是非常低廉;而且由于太陽能的地域性限制較小,能夠直接面向終端用戶。由于人們不懈的努力,已經(jīng)取得了很大的發(fā)展。近年來,太陽能電池作為新興能源存在潛在的商業(yè)前景,得到了工業(yè)界和學(xué)術(shù)界的大量投入,并取得了很大的發(fā)展。從目前來看,其基礎(chǔ)研究主要集中在提高器件的效率和降低成本以及尋找新的、改進(jìn)的材料。為了實(shí)現(xiàn)太陽能電池的商業(yè)化目標(biāo),需要不斷選擇新材料和優(yōu)化器件的結(jié)構(gòu)。本論文主要研究了有機(jī)小分子太陽能電池和無機(jī)有機(jī)雜化的

3、太陽能電池。銥的配合物已經(jīng)廣泛應(yīng)用于電致發(fā)光中,并且表現(xiàn)了良好的發(fā)光性能。本文首次將銥的配合物用于有機(jī)小分子太陽能電池中。經(jīng)過一系列實(shí)驗(yàn)條件和器件結(jié)構(gòu)的摸索,制作性能較好的太陽能電池器件。討論膜厚以及功能層對器件性能的影響。通過對材料和實(shí)驗(yàn)結(jié)果的分析,找出限制性能提高的主要因素。設(shè)計(jì)實(shí)驗(yàn)解決問題。利用無機(jī)納米孔材料TiO2和有機(jī)小分子材料CuPc和C60制作無機(jī)有機(jī)雜化太陽能電池。納米孔 TiO2提供了一種具有 較大的激子拆分界面面積和連續(xù)電荷傳輸通道。分別討論了玻璃基底、納米孔TiO2層的厚度、 有機(jī)層的厚度、共蒸比例、共蒸層、納米孔TiO2層以及表面修飾對光伏性能提高的重要作用, 并且討論

4、了電池的穩(wěn)定性。本論文主要研究有機(jī)小分子太陽能電池和無機(jī)有機(jī)雜化的太陽能電池。有以下兩點(diǎn)內(nèi)容:1. 有機(jī)小分子太陽能電池的研究有機(jī)小分子太陽能電池的研究主要集中在以下幾個方面:一是有機(jī)光電材料的研究,二是提高太陽能電池器件性能的研究,三是有機(jī)太陽能電池機(jī)理的研究。本文主要研究材料。有機(jī)小分子太陽能電池的實(shí)現(xiàn)依賴于能夠完成光電轉(zhuǎn)換的有機(jī)小分子材料。這些材料都有一個共同的電子結(jié)構(gòu),即共腕口電子。由碳原子的單鍵和雙鍵交替形成的體系被稱為共腕體系。在共腕體系中,每個碳原子有三個等價(jià)的相互作用較強(qiáng)的6電子和一個相互作用較弱的 口電子,且口電子與三個(T電子所在的平面是垂直的。由于 口電子之間的相互作用較

5、弱,它們會形成能量間隔較大的成鍵態(tài)和反鍵態(tài),分別對應(yīng)于HOMO 和 LUMO 。有機(jī)半導(dǎo)體的HOMO和 LUMO 類似無機(jī)半導(dǎo)體中的導(dǎo)帶和價(jià)帶。有機(jī)光伏電池潛在的低成本性吸引了人們的很多關(guān)注。有機(jī)材料可以通過大量的合成得到從而降低了電池的成本。人們還在不斷地研究新的有機(jī)材料,主要從以下角度出發(fā):第一,從光譜角度,材料的吸收光譜與太陽光譜覆蓋的程度越大越好,吸收光越多,光電轉(zhuǎn)化的效率會越高。第二,從能級角度,p 型材料和n 型材料形成的異質(zhì)結(jié),能級要匹配。結(jié)合以上,我們合成了銥的配合物。目前,銥的配合物已廣泛應(yīng)用于電致發(fā)光以及光致發(fā)光的研究中。但在太陽能電池中卻應(yīng)用很少。本著取得很高的 光電轉(zhuǎn)化

6、效率的設(shè)想,我們分別采用蒸鍍的方法制作太陽能電池器件。首先,設(shè)計(jì)電池結(jié)構(gòu)。選擇電子傳輸材料、空穴傳輸材料、電子阻擋層以及空穴阻擋層等。其次,摸索工藝條件以及材料的厚度等等。討論各因素對電池性能提高的作用。我們又通過旋涂方法制作了高分子電池,以及合成另一種鉞的配合物,試圖提高電池的光伏性能。本文以(PdaaRr(acac)作為空穴傳輸材料,C60作為電子傳輸材料,通過選擇不同的阻擋層、以及改變功能層厚度、改變摻雜材料等因素,制作結(jié)構(gòu)不同的器件,優(yōu)化器件結(jié)構(gòu)得出最佳器件結(jié)構(gòu):ITO/Ir 配合物 (6nm)/C60(68 nm)/BCP(7 nm)/Al(80 nm)。光電轉(zhuǎn)化效率為 0.85%。

7、2. 無機(jī)有機(jī)雜化太陽能電池的研究 隨著科技的發(fā)展,太陽能電池也有了飛速的發(fā)展?,F(xiàn)在,單晶硅,多晶硅電池已經(jīng)在小規(guī)模器件上得到了商業(yè)應(yīng)用,電池能量收集效率已達(dá)到24%,接近于理論計(jì)算值的上限30%。但是其生產(chǎn)工藝復(fù)雜,而且成熟的技術(shù)使光電轉(zhuǎn)換效率基本達(dá)到極限值,進(jìn)一步改進(jìn)受到限制,材料本身不利于降低成本,這些原因限制了它的大規(guī)模民用化。無機(jī)太陽電池受到限制,是因?yàn)橐褂冒嘿F的半導(dǎo)體襯底,因而價(jià)格比較昂貴,不能滿足大規(guī)模應(yīng)用。制備有機(jī)太陽電池不需要這些條件,但是有機(jī)太陽電池的轉(zhuǎn)換效率比較低,遠(yuǎn)遠(yuǎn)未達(dá)到傳統(tǒng)無機(jī)太陽電池10%的轉(zhuǎn)換效率。而有機(jī)/無機(jī)復(fù)合半導(dǎo)體,打破了無機(jī)半導(dǎo)體和有機(jī)半導(dǎo)體的局限,綜

8、合兩者優(yōu)勢,使其兼具了有機(jī)材料的電子結(jié)構(gòu)多樣性、高的光吸收效率、易加工性和無機(jī)材料的高載流子遷移率、高機(jī)械性能、高穩(wěn)定性等優(yōu)點(diǎn),具有重要理論意義和潛在的應(yīng)用價(jià)值。有機(jī)/無機(jī)復(fù)合太陽能電池近期發(fā)展經(jīng)歷了三個階段:第一個階段是雙層平面異質(zhì)結(jié),第二個階段是體異質(zhì)結(jié),第三個階段為有序體異質(zhì)結(jié)。第三個階段是近年來研究最為熱點(diǎn)的。無機(jī)納米材料可以通過控制生長成孔、管、棒、線、顆粒狀,有機(jī)材料通過真空蒸鍍以及旋涂進(jìn)入到無機(jī)納米材料中。這類復(fù)合電池結(jié)構(gòu)圖,主要是用無機(jī)材料和高分子通過旋涂工藝制作的。目前這類電池效率能達(dá)到6%左右。但是由于高分子材料的高成本以及C60衍生物的不穩(wěn)定性限制了這類電池的發(fā)展。有機(jī)光

9、伏電池潛在的低成本性吸引了人們的很多關(guān)注。有機(jī)材料可以通過大量的合成得到從而降低了電池的成本。有機(jī)材料的載流子遷移率很低限制了有機(jī)太陽能電池的發(fā)展。有機(jī)層的厚度越厚對光的吸收越好,但是由于有機(jī)材料比較差的載流子遷移率,使激子很難擴(kuò)散到界面進(jìn)行拆分,而在有機(jī)材料中就淬滅了。為了解決這個問題,我們引入了載流子遷移率高的無機(jī)功能性納米材料增加電荷的收集和傳輸能力。TiO2作為無機(jī)n型半導(dǎo)體材料,具有很好的電子傳輸性質(zhì)。有序的納米孔的 TiO2可以和有機(jī)小分子材料形成異質(zhì)結(jié),提供較大 的面積進(jìn)行激子拆分。另外,納米孔的 TiO2提供連續(xù)的孔道,使得電子從負(fù)極導(dǎo)出,提高了 電子的收集效率。有機(jī)p型半導(dǎo)體

10、材料酥菁銅有很好的光學(xué)吸收性質(zhì),并且能級和無機(jī)n型半導(dǎo)體材料TiO2能級匹配。有望有很好的電子拆分,得到較高的光電轉(zhuǎn)換效率。并且這種反向的電池結(jié)構(gòu)相對于傳統(tǒng)結(jié)構(gòu)的電池有很好的穩(wěn)定性,因?yàn)榍罢呖梢杂行У姆乐寡鯕鈹U(kuò)散到C60材料中。因此,我們使用了有機(jī)小分子材料作為光學(xué)吸收層,和有連續(xù)的傳輸孔道納米孔的TiO2層構(gòu)成光伏電池。我們討論了玻璃基底、納米孔TiO2層的厚度、有機(jī)層的厚度、共蒸比例、共蒸層、納米孔TiO2層以及表面修飾對光伏性能提高的重要作用。通過改變器件參數(shù),我們 得到了最優(yōu)化的器件結(jié)構(gòu)。我們的實(shí)驗(yàn)結(jié)果表明納米孔的 TiO2層和共蒸層對光伏性能的提高 有很重要的作用,并且這種反向結(jié)構(gòu)的

11、電池較普通的正向電池有很好的穩(wěn)定性。以載流子遷移率很高的無機(jī)材料 TiO2和有機(jī)材料CuPcffiC60制作電池。通過器件結(jié)構(gòu)優(yōu)化 得出最佳器件結(jié)構(gòu):ITO/致密TiO2(30 nm)/納米孔TiO2(130 nm)/C6o:CuPc(1:6質(zhì)量比)(20nm)/CuPc(20 nm)/PEDOT:PSS(50 nm)/Au(30 nm).納米孔 TiO2提供了一種具有較大的激子拆 分界面面積和連續(xù)電荷傳輸通道。討論了納米孔TiO 2層以及共蒸層的引入對提高電池性能的作用。這種反向結(jié)構(gòu)的電池比起傳統(tǒng)結(jié)構(gòu)的電池來說具有很好的穩(wěn)定性,這也為我們提供了 一個很好的途徑來提高電池的穩(wěn)定性。關(guān)鍵詞:太陽

12、能電池,TiO2, CuPc, C60STUDY ON ORGANIC SMALL MOLECULAR SOLAR CELLS ANDORGANIC INORGANIC HYBRID SOLAR CELLSMei-na ShanABSTRACTWith the development of economy, the increase of population and social improvement of living standards, the future of world energy consumption will continue to grow, the fossil e

13、nergy consumption one day will reach a limit. The energy problem is increasingly serious, make people aware of the urgency for renewable energy, at the same time as the traditional energy produced during the combustion of the exhaust gas of great harm to the human living environment, but also make p

14、eople aware of the importance of energy without pollution. Development and utilization of solar energy resources potential is very broad. While the use of solar energy is one of the important ways, is the development of solar cell.In recent years, the solar cell as the use of solar energy is one of

15、the important ways, had caused the wide attention of people. The direct conversion of solar energy into electric energy is a kind of ideal patterns of energy use. Solar cell use does not have noise, carbon dioxide and other harmful gases; the maintenance cost is very low; and because the solar regio

16、nal limit is lesser, can face terminal user directly. Due to the unremitting efforts, has achieved great development. In recent years, the solar battery as an emerging energy potential business prospects, get in industry and academia, a large number of inputs, and achieved great development.From the

17、 present situation, the basic research mainly focuses on improving the device efficiency and reduce the cost and to find new, improved material. In order to realize the solar battery commercial goals, constantly in need of new materials and the optimization of the device structure. This paper mainly

18、 studies the small molecular organic solar cells and organic inorganic hybrid solar cell. Iridium complexes has been widely applied in electroluminescence, and the performance of good luminescent properties. In this paper the first iridium complexes for small molecular organic solar cell. After a se

19、ries of experimental conditions and device structure of exploration, production performance, good solar cell devices. Discuss the film thickness and the functional layer influence on device performances. Based on the materials and the analysis of the experimental results, find out the main factors l

20、imiting performance. Design of experiments to solve the problem. The use of inorganic nanoporous materials TiO2 and small organic molecular materials CuPc and C60 production organic inorganic hybrid solar cell. Nano hole TiO2 is provided having a large exciton separation of interface area and contin

21、uous charge transmission channel. Discusses respectively the glass substrate, nano hole TiO2 layer thickness, the thickness of theorganic layer CO, CO evaporation layer, proportion of nano hole TiO2 layer and surface modification on the photovoltaic performance of an important role, and discusses th

22、e stability of the battery.This paper mainly studies the small molecular organic solar cells and organic inorganic hybrid solar cell. The following two content:1 small molecular organic solar cell researchSmall molecular organic solar cell research mainly concentrates in the following several aspect

23、s : one is the organic optoelectronic materials research, two is to improve the solar cell device performance of organic solar cells, three is the study on the mechanism of. This paper mainly studies the material. Small molecular organic solar cell is dependent on the ability to complete the impleme

24、ntation of photoelectric conversion of organic small molecular materials. These materials have a common electronic structure, namely the conjugate Alternative Title electronic. The carbon atom of the single and double bond formation of alternating system known as the conjugated system. The conjugate

25、d system, each carbon atom has three equivalent interactions are stronger sigma electrons and a weak interaction of Alternative Title Electronic, electronic and alternative title with three sigma electronic plane is vertical. Alternative title due to interactions between electrons are weak, they wil

26、l form a larger energy interval bonding states and reverse bonding, respectively corresponding to HOMO and LUMO. Organic semiconductor HOMO and LUMO similar inorganic semiconductor conduction band and valence band. Organic photovoltaic cell potential low cost it attracted a lot of attention. Organic

27、 material through a large number of obtained thereby lowering the cost of the battery. People continue to study of new organic materials, mainly from the following angles: first, from the spectral angle, the absorption spectrum of the material and the solar spectral degree of coverage of the bigger

28、the better, the more light absorption, photoelectric conversion efficiency will be higher. Second, from the energy angle, P type material and a type N material forming a heterojunction, level to match. The combination of the above, we have synthesized iridium complexes. At present, iridium complexes

29、 has been widely used in electroluminescence and Photoluminescence Studies of. But in the solar cell is rarely used. In a very high photoelectric conversion efficiency of the idea, we are using the evaporation method of making solar cell devices.First, design the cell structure. Choice of electronic

30、 transmission material, a hole transporting material, an electron blocking layer and a hole blocking layer. Secondly, fumbleprocess condition and the thickness of the material and so on. Discussion of various factors on the performance of battery function to improve. We again by spin coating method

31、to fabricate polymer battery, as well as the synthesis of another iridium complexes, trying to improve the battery photovoltaic performance. Based on the (Pdaa ) 2Ir ( ACAC ) as hole transport material, C60 as electron transport material, by choosing different barrier layer, and change the function

32、of layer thickness, changing the doping material and other factors, making the structure of different device, device structure optimization optimal device structure: ITO / Ir complexes ( 6 nm / C60 ) ( 68 nm ) / BCP ( 7 nm ) / Al ( 80 nm ). Photoelectric conversion efficiency of 0.85%.2 organic inor

33、ganic hybrid solar cell researchWith the development of science and technology, solar battery has been rapid development. Now, monocrystalline silicon, polycrystalline silicon solar cell in small scale device have been commercial applications, battery energy collection efficiency has reached 24%, cl

34、ose to the theoretical value of the upper limit of 30%. However,its production process is complicated, and the mature technology so that the photoelectric conversion efficiency of the basic limit value is reached, further improvement is restricted, the material is not beneficial to reduce the cost,

35、these reasons restricting its massive civilian.Inorganic solar cells is restricted, is because of the need to use expensive semiconductor substrate, so expensive, can not meet the large scale application. Preparation of organic solar cell does not need these conditions, but the organic solar cell co

36、nversion efficiency is quite low, far away from the traditional inorganic solar cells 10% conversion efficiency。 Organic / inorganic composite semiconductor, breaking the inorganic semiconductor and organic semiconductor limitations, integrated the advantages of both, so both the organic material of

37、 the electronic structure of diversity, high optical absorption efficiency, ease of processing and the inorganic material of high carrier mobility, high mechanical performance, high stability and other advantages, has the important theory significance and the potential application value. Organic / i

38、norganic composite solar battery near future development has experienced three stages: the first stage is planar bilayer heterojunction, the second stage is the bulk heterojunction, third stages for the orderly and bulk heterojunction. The third stage is the hotspot researchin recent years. Inorgani

39、c nano materials can be controlled through the growth into a hole, tube, rod, wire, particulate, organic material by vacuum evaporation and spin coating into inorganic nanometer materials. This kind ofcompound cell structure, is mainly used for inorganic materials and polymer by a spin coating proce

40、ss for making. At present this kind of battery efficiency can reach 6% or so. But because of the high cost of polymer materials and C60 derivatives instability limits the type of cell development.Organic P type semiconductor material of copper phthalocyanine has good optical absorption properties, a

41、nd energy and inorganic N type semiconductor material TiO2 energy level matching. Is expected to have very good electronic split, obtain higher photoelectric conversion efficiency. And the reverse battery structure relative to the traditional structure of the battery has good stability, because the former can effectively prevent the diffusion of oxygen into the C60 material.Therefore, we use the organic small molecule material as the optical absorpti

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論