動量及動量守恒定律練習題_第1頁
動量及動量守恒定律練習題_第2頁
動量及動量守恒定律練習題_第3頁
動量及動量守恒定律練習題_第4頁
動量及動量守恒定律練習題_第5頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、動 量 及 動 量 守 恒 定 律 練 習 題1. 一位質量為m的運動員從下蹲狀態(tài)向上起跳,經At時間,身體伸直并剛好離開地面,速度為v.在 此過程中,1 C A.地面對他的/中量為 mvr mgA t ,地面對他做的功為-mv 2B.地面對他的沖量為 m葉mgA t ,地面對他做的功為零C.地面對他的沖量為 mv,地面對他做的功為1 mv22D.地面對他的沖量為 mv- mgA t ,地面對他做的功為零2.如圖所示,位于光滑水平桌面上的小滑塊 P和Q都可視作質點,質量相等.Q與輕質彈簧相連.設 Q靜止,P以某一初速度向Q運動并與彈簧發(fā)生碰撞.在整個碰撞過程中,彈簧具有的最大彈性 勢能等于rz

2、nfTQ-1A. P的初動能B. P的初動能的一2C. P的初動能的1D. P的初動能的- 343.一質量為m的物體放在光滑的水平面上,今以恒力F沿水平方向推該物體,在相同的時間間隔內, 下列說法正確的是A.物體的位移相等B.物體動能的變化量相等C. F對物體做的功相等D.物體動量的變化量相等4 .航天飛機在一段時間內保持繞地心做勻速圓周運動,則A.它的速度大小不變,動量也不變 B.它不斷克服地球對它的萬有引力做功C.它的速度大小不變,加速度等于零 D.它的動能不變,引力勢能也不變5 . 一個質量為0.3kg的彈性小球,在光滑水平面上以 6m/s的速度垂直撞到墻上,碰撞后小球沿相 反方向運動,

3、反彈后的速度大小與碰撞前相同.則碰撞前后小球速度變化量的大小Av和碰撞過程中墻對小球做功的大小 W為A. A v=0B. A v=12m/sC, W=0D, W=10.8J6 .將甲、乙兩物體自地面同時上拋,甲的質量為m,初速為v,乙的質量為2m,初速為v/2 .若不計空氣阻力,則A.甲比乙先到最高點B.甲和乙在最高點的重力勢能相等C.落回地面時,甲的動量的大小比乙的大 D.落回地面時,甲的動能比乙的大7 .在光滑水平地面上有兩個彈性小球 A、B,質量都為m現B球靜止,A球向B球運動,發(fā)生正碰.已知碰撞過程中總機械能守恒,兩球壓縮最緊時的彈性勢能為Ep,則碰前A球的速度等于A. EPB. .

4、2EpC. 2 EpD. 2 2Epmmm- m8 .在光滑水平面上,動能為巳、動量的大小為po的小鋼球1與靜止小鋼球2發(fā)生碰撞,碰撞前后球1 的運動方向相反.將碰撞后球1的動能和動量的大小分別記為E、p%球2的動能和動量的大小分別記為巳、p2,則必有A. EEoB. p1EdD. 6po9 .半徑相等的兩個小球甲和乙,在光滑水平面上沿同一直線相向運動.若甲球的質量大于乙球的質量,碰撞前兩球的動能相等,則碰撞后兩球的運動狀態(tài)可能是A,甲球的速度為零而乙球的速度不為零B,乙球的速度為零而甲球的速度不為零C.兩球的速度均不為零D.兩球的速度方向均與原方向相反,兩球的動能仍相等10 .下雪天,卡車在

5、筆直的高速公路上勻速行駛 .司機突然發(fā)現前方停著一輛故障車,他將剎車 踩到底,車輪被抱死,但卡車仍向前滑行,并撞上故障車,且推著它共同滑行了一段距離 l 后停下.事故發(fā)生后,經測量,卡車剎車時與故障車距離為L,撞車后共同滑行的距離l -8L.25假定兩車輪胎與雪地之間的動摩擦因數相同.已知卡車質量 泌故障車質量m4M倍.(1)設卡車與故障車相撞前的速度為W,兩車相撞后的速度變?yōu)檫?求E ;V2(2)卡車司機至少在距故障車多遠處采取同樣的緊急剎車措施,事故就能免于發(fā)生.如圖所示,輕彈簧的一端固定,另一端與滑塊B相連,B靜止在 水平導軌上,彈簧處在原長狀態(tài),另一質量與 B相同的滑塊A, 從導軌上的

6、P點以某一初速度向B滑行,當A滑過距離L時, 與B相碰,碰撞時間極短,碰后 A、B緊貼在一起運動,但互不粘連,已知最后A恰好返回出發(fā)點P并停止.滑塊A和B與導軌的滑動摩擦因數都為 小,運動 過程中彈簧最大形變量為L2,求A從P出發(fā)時的初速度vo.12、在光滑水平面上有一個靜止的質量為 M的木塊,一顆質量為m的子彈以初速度v0水平射入木塊 而沒有穿出,子彈射入木塊的最大深度為 do設子彈射入木塊的過程中木塊運動的位移為 s,子 彈所受阻力恒定。試證明:sd。13、質量為M的小車置于水平面上。小車的上表面由 1/4圓弧和平面組成,車的 右端固定有一不計質量的彈簧, 圓弧AB部分光滑,半徑為R,平面

7、BC部分粗糙, 長為l,C點右方的平面光滑?;瑝K質量為 色從圓弧最高處A無初速下滑(如圖),與彈簧相接觸弁壓縮彈簧,最后又返回到 B相對于車靜止。求:(1) BC部分的動摩擦因數 ;(2)彈簧具有的最大彈性勢能;(3)當滑塊與彈簧剛分離時滑塊和小車的速度大小.由于只有彈簧的彈力做功,系統(tǒng)的機械能守恒,所以有: (叫m2)v。2 Ep E動量及動量守恒定律答案m1(m1 m2)v2例題1、解:系統(tǒng)水平方向動量守恒,全過程機械能也守恒2m2假設在以后的運動中滑塊B可以出現速度為0的時刻,并設此時A的速度為用,彈簧的彈性勢能在小球上升過程中,由水平方向系統(tǒng)動量守恒得:mv1由系統(tǒng)機械能守恒得:1 m

8、v12 2 M mv2 mgH解得HMvTm-為Ep,由機械能守恒定律得:12一 m1Vl 2Epm m2)2v2,根據動量守恒得(m1全過程系統(tǒng)水平動量守恒,機械能守恒,得v*m%2 2求出v1代入上式得:如令Ep(m12 2m2) v02m2例題2、解:子彈和木塊最后共同運動,相當于完全非彈性碰撞。從動量的角度看,子彈射入木塊過程中系統(tǒng)動量守恒:mv0 M2 2因為 EP 0 ,故得:(m1 m2)v02m1(m12 2血色。即2m2m2,這與已知條件中m!m2不符.從能量的角度看,該過程系統(tǒng)損失的動能全部轉化為系統(tǒng)的內能設平均阻力大小為f,設子彈、可見在以后的運動中不可能出現滑塊B的速度

9、為0的情況.木塊的位移大小分別為S1、S2,對子彈用動能定理:f Si如圖所示,顯然有s 1- S2 =dmv2 - mv222例題6、解:(1)由機械能守恒定律,有:12mgh - m1V ,斛行 v = q2gh(2) A、B在碰撞過程中內力遠大于外力,由動量守恒,有:m1V (mi m2)v對木塊用動能定理:f s2、相減得:fmvo 2-Mv2 21 M2碰后A、B 一起壓縮彈簧,當彈簧最大壓縮量為d時,A、B克服摩擦力所做的功 W(m1 m2)gd由上式不難求得平均阻力的大小:2 Mm 2 m v vo2 M m2f Mmv 02 M m d由能量守恒定律,有:-(m, m2)v2

10、EP(3 m2)gd2至于木塊前進的距離S2,可以由以上、相比得出:S22解得 EP gh(m1 m2)gdm1 m2例題7、解:(1)由于碰撞后球沿圓弧的運動情況與質量無關,因此,A B兩球應同時達到最大例題3、解:先畫出示意圖。人、船系統(tǒng)動量守恒,總動量始終為零,所以人、船動量大小始終相等。從圖中可以看出,人、船的位移大小之和等于Lo設人、船位移大小分別為11、12,則:mv=M%,高度處,對A、B兩球組成的系統(tǒng),由機械能守恒定律得:mgR哼mgR4兩邊同乘時間t , ml二ML 而 l 1+12=L, . 12(2)設A、B第一次碰撞后的速度分別為v1、v2,取方向水平向右為正,B兩球組

11、成的系統(tǒng),例題4、解:火箭噴出燃氣前后系統(tǒng)動量守恒噴出燃氣后火箭剩余質量變?yōu)镸-m以vo方向為正1212有.mgRmvmv2 , m 2gR mvmv222方向,Mvo一Mv0 mumu M m v, v M m1f-gR,萬向水平向右.例題5、解:(1)當彈簧處壓縮狀態(tài)時,系統(tǒng)的機械能等于兩滑塊的動能和彈簧的彈性勢能之和, 當彈簧伸長到自然長度時,彈性勢能為 0,因這時滑塊A的速度為0,故系統(tǒng)的機械能等于滑塊B的 動能.設這時滑塊B的速度為v,則有E 1 m2v2.2因系統(tǒng)所受外力為0,由動量守恒定律有:(或mJ v m2V.解得e (m1 m2)2V;.2m2設第一次碰撞剛結束時軌道對 B

12、球的支持力為N,方向豎直向上為正,則N軌道的壓力N N 4.5mg ,方向豎直向下.2mgm , B球對R(3)設A、B球第二次碰撞剛結束時的速度分別為 V、V2,取方向水平向右為正,則mv1mv2 mV1121mV2 , mgR - mV1222mV2解得Vi=12gR, M=0 (另一組解M= Vi, M= V2不合題意,舍去)例題 8、解:取 A原來運動的方向 為正,則B被碰后的 速度也為正,由動 量守恒定律 mAvA mAvA mBvB解得vA1m/s,說明碰撞后A的速度方向與碰撞前相反。例題9、解:取向右為正方向,系統(tǒng)的初始動量為 MV0 mv0,設當薄板速度vi 2.4m/s時,物塊 的速度為V2,此時系統(tǒng)的總動量為 Mv1 mv2 ,根據動量守恒定律有 Mv0 mv0 Mv1 mv2 ,解得 v2 08m/s,可見此時物塊以0.8m/s的速度向右做勻加速運動。例題10、解析:設小孩跳車后車的速度為V且向右,則小孩對地的速度為v 2,由動量守恒定律 得(M

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論