版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、第十二章 立體幾何一、基礎(chǔ)知識(shí)公理1 一條直線。上如果有兩個(gè)不同的點(diǎn)在平面。內(nèi)則這條直線在這個(gè)平面內(nèi),記作:aa公理2 兩個(gè)平面如果有一個(gè)公共點(diǎn),則有且只有一條通過(guò)這個(gè)點(diǎn)的公共直線,即若P,則存在唯一的直線m,使得=m,且Pm。公理3 過(guò)不在同一條直線上的三個(gè)點(diǎn)有且只有一個(gè)平面。即不共線的三點(diǎn)確定一個(gè)平面推論l 直線與直線外一點(diǎn)確定一個(gè)平面推論2 兩條相交直線確定一個(gè)平面推論3 兩條平行直線確定一個(gè)平面公理4 在空間內(nèi),平行于同一直線的兩條直線平行定義1 異面直線及成角:不同在任何一個(gè)平面內(nèi)的兩條直線w.w.w.k.s.5.u.c.o.m叫做異面直線過(guò)空間任意一點(diǎn)分別作兩條異面直線的平行線,這
2、兩條直線所成的角中,不超過(guò)900的角叫做兩條異面直線成角與兩條異面直線都垂直相交的直線叫做異面直線的公垂線,公垂線夾在兩條異面直線之間的線段長(zhǎng)度叫做兩條異面直線之間的距離定義2 直線與平面的位置關(guān)系有兩種;直線在平面內(nèi)和直線在平面外直線與平面相交和直線與平面平行(直線與平面沒(méi)有公共點(diǎn)叫做直線與平面平行)統(tǒng)稱直線在平面外定義3 直線與平面垂直:如果直線與平面內(nèi)的每一條直線都垂直,則直線與這個(gè)平面垂直定理1 如果一條直線與平面內(nèi)的兩條相交直線都垂直,則直線與平面垂直定理2 兩條直線垂直于同一個(gè)平面,則這兩條直線平行定理3 若兩條平行線中的一條與一個(gè)平面垂直,則另一條也和這個(gè)平面垂直定理4 平面外一
3、點(diǎn)到平面的垂線段的長(zhǎng)度叫做點(diǎn)到平面的距離,若一條直線與平面平行,則直線上每一點(diǎn)到平面的距離都相等,這個(gè)距離叫做直線與平面的距離定義5 一條直線與平面相交但不垂直的直線叫做平面的斜線由斜線上每一點(diǎn)向平面引垂線,垂足叫這個(gè)點(diǎn)在平面上的射影所有這樣的射影在一條直線上,這條直線叫做斜線在平面內(nèi)的射影斜線與它的射影所成的銳角叫做斜線與平面所成的角結(jié)論1 斜線與平面成角是斜線與平面內(nèi)所有直線成角中最小的角定理4 (三垂線定理)若d為平面。的一條斜線,b為它在平面a內(nèi)的射影,c為平面a內(nèi)的一條直線,若cb,則ca逆定理:若ca,則cb定理5 直線d是平面a外一條直線,若它與平面內(nèi)一條直線b平行,則它與平面a
4、平行定理6 若直線。與平面平行,平面經(jīng)過(guò)直線a且與平面a交于直線6,則a/b結(jié)論2 若直線。與平面和平面都平行,且平面與平面相交于b,則a/b定理7 (等角定理)如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行且方向相同,則兩個(gè)角相等定義6 平面與平面的位置關(guān)系有兩種:平行或相交沒(méi)有公共點(diǎn)即平行,否則即相交定理8 平面a內(nèi)有兩條相交直線a,b都與平面平行,則/. 定理9 平面與平面平行,平面=a,=b,則a/b定義7 (二面角),經(jīng)過(guò)同一條直線m的兩個(gè)半平面,(包括直線m,稱為二面角的棱)所組成的圖形叫二面角,記作m,也可記為Am一B,AB等過(guò)棱上任意一點(diǎn)P在兩個(gè)半平面內(nèi)分別作棱的垂線AP,BP,則A
5、PB(900)叫做二面角的平面角它的取值范圍是0,特別地,若APB900,則稱為直二面角,此時(shí)平面與平面的位置關(guān)系稱為垂直,即.定理10 如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的垂線,則這兩個(gè)平面垂直定理11 如果兩個(gè)平面垂直,過(guò)第一個(gè)平面內(nèi)的一點(diǎn)作另一個(gè)平面的垂線在第一個(gè)平面內(nèi)定理12 如果兩個(gè)平面垂直,過(guò)第一個(gè)子面內(nèi)的一點(diǎn)作交線的垂線與另一個(gè)平面垂直定義8 有兩個(gè)面互相平行而其余的面都是平行四邊形,并且每相鄰兩個(gè)平行四邊形的公共邊(稱為側(cè)棱)都互相平行,由這些面所圍成的幾何體叫做棱柱兩個(gè)互相平行的面叫做底面如果底面是平行四邊形則叫做平行六面體;側(cè)棱與底面垂直的棱柱叫直棱柱;底面是正多邊形的直棱柱叫做正
6、棱柱底面是矩形的直棱柱叫做長(zhǎng)方體棱長(zhǎng)都相等的正四棱柱叫正方體定義9 有一個(gè)面是多邊形(這個(gè)面稱為底面),其余各面是一個(gè)有公共頂點(diǎn)的三角形的多面體叫棱錐底面是正多邊形,頂點(diǎn)在底面的射影是底面的中心的棱錐叫正棱錐定理13 (凸多面體的歐拉定理)設(shè)多面體的頂點(diǎn)數(shù)為V,棱數(shù)為E,面數(shù)為F,則V+F-E=2定義10 空間中到一個(gè)定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡是一個(gè)球面球面所圍成的幾何體叫做球定長(zhǎng)叫做球的半徑,定點(diǎn)叫做球心 定理14 如果球心到平面的距離d小于半徑R,那么平面與球相交所得的截面是圓面,圓心與球心的連線與截面垂直設(shè)截面半徑為r,則d2+r2R2過(guò)球心的截面圓周叫做球大圓經(jīng)過(guò)球面兩點(diǎn)的球大圓夾在
7、兩點(diǎn)間劣弧的長(zhǎng)度叫兩點(diǎn)間球面距離定義11 (經(jīng)度和緯度)用平行于赤道平面的平面去截地球所得到的截面四周叫做緯線緯線上任意一點(diǎn)與球心的連線與赤道平面所成的角叫做這點(diǎn)的緯度用經(jīng)過(guò)南極和北極的平面去截地球所得到的截面半圓周(以兩極為端點(diǎn))叫做經(jīng)線,經(jīng)線所在的平面與本初子午線所在的半平面所成的二面角叫做經(jīng)度,根據(jù)位置不同又分東經(jīng)和西經(jīng)定理15 (祖 原理)夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平面的任意平面所截,如果截得的兩個(gè)截面的面積總相等,那么這兩個(gè)幾何體的體積相等.定理16 (三面角定理)從空間一點(diǎn)出發(fā)的不在同一個(gè)平面內(nèi)的三條射線共組成三個(gè)角其中任意兩個(gè)角之和大于另一個(gè),三個(gè)角之和小于
8、3600定理17 (面積公式)若一個(gè)球的半徑為R,則它的表面積為S球面=4R2。若一個(gè)圓錐的母線長(zhǎng)為l,底面半徑為r,則它的側(cè)面積S側(cè)=rl.定理18 (體積公式)半徑為R的球的體積為V球=;若棱柱(或圓柱)的底面積為s,高h(yuǎn),則它的體積為V=sh;若棱錐(或圓錐)的底面積為s,高為h,則它的體積為V=定理19 四面體ABCD中,記BDC=,ADC=,ADB=,BAC=A,ABC=B,ACB=C。DH平面ABC于H。(1)射影定理:SABDcos=SABH,其中二面角DABH為。(2)正弦定理:(3)余弦定理:cos=coscos+sinsincosA.cosA=-cosBcosC+sinBs
9、inCcos.(4)四面體的體積公式DHSABC=(其中d是a1, a之間的距離,是它們的夾角)SABDSACDsin(其中為二面角BADC的平面角)。二、方法與例題1公理的應(yīng)用。例1 直線a,b,c都與直線d相交,且a/b,c/b,求證:a,b,c,d共面。例2 長(zhǎng)方體有一個(gè)截面是正六邊形是它為正方體的什么條件?2 異面直線的相關(guān)問(wèn)題。例3 正方體的12條棱互為異面直線的有多少對(duì)?例4 正方體,ABCDA1B1C1D1棱長(zhǎng)為1,求面對(duì)角線A1C1與AB1所成的角。3平行與垂直的論證。例5 A,B,C,D是空間四點(diǎn),且四邊形ABCD四個(gè)角都是直角,求證:四邊形ABCD是矩形。例6 一個(gè)四面體有
10、兩個(gè)底面上的高線相交。證明:它的另兩條高線也相交。例7 在矩形ABCD中,AD=2AB,E是AD中點(diǎn),沿BE將ABE折起,并使AC=AD,求證:平面ABE平面BCDE。4直線與平面成角問(wèn)題。例8 正方形ABCD中,E,F(xiàn)分別是AB,CD的中點(diǎn),G為BF的中點(diǎn),將正方形沿EF折成1200的二面角,求AG和平面EBCF所成的角。例9 OA是平面的一條斜角,AB于B,C在內(nèi),且ACOC,AOC=,AOB=,BOC=。證明:cos=coscos.5二面角問(wèn)題。例10設(shè)S為平面ABC外一點(diǎn),ASB=450,CSB=600,二面角ASBC為直角二面角,求ASC的余弦值。例11 已知直角ABC的兩條直角邊A
11、C=2,BC=3,P為斜邊AB上一點(diǎn),沿CP將此三角形折成直二面角ACPB,當(dāng)AB=時(shí),求二面角PACB的大小。6距離問(wèn)題。例12 正方體ABCDA1B1C1D1的棱長(zhǎng)為a,求對(duì)角線AC與BC1的距離。例13在三棱維SABC中,底面是邊長(zhǎng)為的正三角形,棱SC的長(zhǎng)為2,且垂直于底面,E,D分別是BC,AB的中點(diǎn),求CD與SE間的距離。分析 取BD中點(diǎn)F,則EF/CD,從而CD/平面SEF,要求CD與SE間的距離就轉(zhuǎn)化為求點(diǎn)C到平面SEF間的距離。7凸多面體的歐拉公式。例14 一個(gè)凸多面體有32個(gè)面,每個(gè)面或是三角形或是五邊形,對(duì)于V個(gè)頂點(diǎn)每個(gè)頂點(diǎn)均有T個(gè)三角形面和P個(gè)五邊形面相交,求100P+1
12、0T+V。8與球有關(guān)的問(wèn)題。例15 圓柱直徑為4R,高為22R,問(wèn)圓柱內(nèi)最多能裝半徑為R的球多少個(gè)?9四面體中的問(wèn)題。例16 已知三棱錐SABC的底面是正三角形,A點(diǎn)在側(cè)面SBC上的射影H是SBC的垂心,二面角HABC的平面角等于300,SA=。求三棱錐SABC的體積。例17 設(shè)d是任意四面體的相對(duì)棱間距離的最小值,h是四面體的最小高的長(zhǎng),求證:2d>h.注:在前面例題中除用到教材中的公理、定理外,還用到了向量法、體積法、射影法,請(qǐng)讀者在解題中認(rèn)真總結(jié)。三、基礎(chǔ)訓(xùn)練題1正三角形ABC的邊長(zhǎng)為4,到A,B,C的距離都是1的平面有_個(gè).2空間中有四個(gè)點(diǎn)E,F(xiàn),G,H,命題甲:E,F(xiàn),G,H不
13、共面;命題乙:直線EF和GH不相交,則甲是乙的_條件。3動(dòng)點(diǎn)P從棱長(zhǎng)為a的正方體的一個(gè)頂點(diǎn)出發(fā),沿棱運(yùn)動(dòng),每條棱至多經(jīng)過(guò)一次,則點(diǎn)P運(yùn)動(dòng)的最大距離為_(kāi)。4正方體ABCDA1B1C1D1中,E,F(xiàn)分別是面ADD1A1、面ABCD的中心,G為棱CC1中點(diǎn),直線C1E,GF與AB所成的角分別是,。則+=_。5若a,b為兩條異面直線,過(guò)空間一點(diǎn)O與a,b都平行的平面有_個(gè)。6CD是直角ABC斜邊AB上的高,BD=2AD,將ACD繞CD旋轉(zhuǎn)使二面角ACDB為600,則異面直線AC與BD所成的角為_(kāi)。7已知PA平面ABC,AB是O的直徑,C是圓周上一點(diǎn)且AC=AB,則二面角APCB的大小為_(kāi)。8平面上有一
14、個(gè)ABC,ABC=1050,AC=,平面兩側(cè)各有一點(diǎn)S,T,使得SA=SB=SC=,TA=TB=TC=5,則ST=_.9在三棱錐SABC中,SA底面ABC,二面角ASBC為直二面角,若BSC=450,SB=a,則經(jīng)過(guò)A,B,C,S的球的半徑為_(kāi).10空間某點(diǎn)到棱長(zhǎng)為1的正四面體頂點(diǎn)距離之和的最小值為_(kāi).11異面直線a,b滿足a/,b/,b/,a/,求證:/。12四面體SABC中,SA,SB,SC兩兩垂直,S0,S1,S2,S3分別表示ABC,SBC,SCA,SAB的面積,求證:13正三棱柱ABCA1B1C1中,E在棱BB1上,截面A1EC側(cè)面AA1C1C,(1)求證:BE=EB1;(2)若AA
15、1=A1B1,求二面角EC-A1-B1C1的平面角。四、高考水平訓(xùn)練題1三棱柱ABC-A1B1C1中,M為A1B1的中點(diǎn),N為B1C與BC1的交點(diǎn),平面AMN交B1C1于P,則=_.2.空間四邊形ABCD中,AD=1,BC=,且ADBC,BD=,AC=,則AC與BD所成的角為_(kāi).3平面平面,=直線AB,點(diǎn)C,點(diǎn)D,BAC=450,BAD=600,且CDAB,則直線AB與平面ACD所成的角為_(kāi).4單位正方體ABCDA1B1C1D1中,二面角ABD1B1大小為_(kāi).5如圖12-13所示,平行四邊形ABCD的頂點(diǎn)A在二面角MN的棱MN上,點(diǎn)B,C,D都在上,且AB=2AD,DAN=450,BAD=60
16、0,若ABCD在半平面上射影為為菜,則二面角MN=_.6已知異面直線a,b成角為,點(diǎn)M,A在a上,點(diǎn)N,B在b上,MN為公垂線,且MN=d,MA=m,NB=n。則AB的長(zhǎng)度為_(kāi).7已知正三棱錐SABC側(cè)棱長(zhǎng)為4,ASB=450,過(guò)點(diǎn)A作截面與側(cè)棱SB,SC分別交于M,N,則截面AMN周長(zhǎng)的最小值為_(kāi).8l1與l2為兩條異面直線,l1上兩點(diǎn)A,B到l2的距離分別為a,b,二面角Al2B大小為,則l1與l2之間的距離為_(kāi).9在半徑為R的球O上一點(diǎn)P引三條兩兩垂直的弦PA,PB,PC,則PA2+PB2+PC2=_.10過(guò)ABC的頂點(diǎn)向平面引垂線AA1,BB1,CC1,點(diǎn)A1,B1,C1,則BAC與B
17、1A1C1的大小關(guān)系是_.11三棱錐ABCD中ACB=ADB=900,ABC=600,BAD=450,二面角ACDB為直角二面角。(1)求直線AC與平面ABD所成的角;(2)若M為BC中點(diǎn),E為BD中點(diǎn),求AM與CE所成的角;(3)二面角MAEB的大小。12四棱錐PABCD底面是邊長(zhǎng)為4的正方形,PD底面ABCD,PD=6,M,N分別是PB,AB的中點(diǎn),(1)求二面角MDNC的大??;(2)求異面直線CD與MN的距離。13三棱錐SABC中,側(cè)棱SA,SB,SC兩兩互相垂直,M為ABC的重心,D為AB中點(diǎn),作與SC平行的直線DP,證明:(1)DP與SM相交;(2)設(shè)DP與SM的交點(diǎn)為,則為三棱錐S
18、ABC外接球球心。五、聯(lián)賽一試水平訓(xùn)練題1現(xiàn)有邊長(zhǎng)分別為3,4,5的三角形兩個(gè),邊長(zhǎng)分別為4,5,的三角形四個(gè),邊長(zhǎng)分別為,4,5的三角形六個(gè),用上述三角形為面,可以拼成_個(gè)四面體。2一個(gè)六面體的各個(gè)面和一個(gè)正八面體的各個(gè)面都是邊長(zhǎng)為a的正三角形,這兩個(gè)多面體的內(nèi)切球的半徑之比是一個(gè)既約分?jǐn)?shù),那么mn=_。3已知三個(gè)平面,每?jī)蓚€(gè)平面之間的夾角都是,且=a,,命題甲:;命題乙:a,b,c相交于一點(diǎn)。則甲是乙的_條件。4棱錐MABCD的底面是正方形,且MAAB,如果AMD的面積為1,則能放入這個(gè)棱錐的最大球的半徑為_(kāi).5將給定的兩個(gè)全等的正三棱錐的底面粘在一起,恰得到一個(gè)所有二面角都相等的六面體,
19、并且該六面體的最短棱長(zhǎng)為2,則最遠(yuǎn)兩個(gè)頂點(diǎn)間距離為_(kāi)。6空間三條直線a,b,c兩兩成異面直線,那么與a,b,c都相交的直線有_條。7一個(gè)球與正四面體的六條棱都相切,正四面體棱長(zhǎng)為a,這個(gè)球的體積為_(kāi)。8由曲線x2=4y,x2=-4y,x=4,x=-4圍成的圖形繞y軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積為V1,滿足x2+y216,x2+(y-2)24,x2+(y+2)24的點(diǎn)(x,y)組成的圖形繞y軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積為V2,則_。9頂點(diǎn)為P的圓錐的軸截面是等腰直角三角形,A是底面圓圍上的點(diǎn),B是底面圓內(nèi)的點(diǎn),O為底面圓圓心,ABOB,垂足為B,OHPB,垂足為H,且PA=4,C為PA的中點(diǎn),則當(dāng)三棱錐CHPC體積最大時(shí),OB=_。10是三
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 員工個(gè)人總結(jié)怎么寫(xiě)2021
- 指導(dǎo)培養(yǎng)教師工作計(jì)劃
- 2022年高中工作計(jì)劃
- 2025年柔性自動(dòng)化裝備項(xiàng)目合作計(jì)劃書(shū)
- 自行車車形容2篇
- 2025年耐高溫濾料合作協(xié)議書(shū)
- 入職競(jìng)業(yè)協(xié)議書(shū)(2篇)
- 2025年高純石英纖維正交三向織物項(xiàng)目發(fā)展計(jì)劃
- 2025年青霉素類抗菌藥物合作協(xié)議書(shū)
- 地下車庫(kù)租賃協(xié)議
- 三年級(jí)上冊(cè)數(shù)學(xué)課件北師大版專項(xiàng)復(fù)習(xí) 操作題、圖形題專項(xiàng)
- 黃土高原水土流失說(shuō)課
- 河北省石家莊市藥品零售藥店企業(yè)藥房名單目錄
- 《來(lái)自地球的力》名師教案
- 食堂虧損分析報(bào)告范文5篇
- 錨桿錨索鉆機(jī)操作規(guī)程
- 《錄音技術(shù)與藝術(shù)》課程教學(xué)大綱
- 部編版七年級(jí)語(yǔ)文上下冊(cè)教材解讀分析精編ppt
- InternationalSettlementsLecture3InternationalClearingSystems
- (完整版)景觀園林工程施工規(guī)范和技術(shù)要求
- (完整版)六年級(jí)轉(zhuǎn)述句練習(xí)題
評(píng)論
0/150
提交評(píng)論