版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、 知能梳理【橢圓】一、橢圓的定義1、橢圓的第一定義:平面內(nèi)一個(gè)動(dòng)點(diǎn)到兩個(gè)定點(diǎn)、的距離之和等于常數(shù) ,這個(gè)動(dòng)點(diǎn)的軌跡叫橢圓。這兩個(gè)定點(diǎn)叫橢圓的焦點(diǎn),兩焦點(diǎn)的距離叫作橢圓的焦距。注意:若,則動(dòng)點(diǎn)的軌跡為線段;若,則動(dòng)點(diǎn)的軌跡無(wú)圖形。二、橢圓的方程1、橢圓的標(biāo)準(zhǔn)方程(端點(diǎn)為a、b,焦點(diǎn)為c)(1)當(dāng)焦點(diǎn)在軸上時(shí),橢圓的標(biāo)準(zhǔn)方程:,其中;(2)當(dāng)焦點(diǎn)在軸上時(shí),橢圓的標(biāo)準(zhǔn)方程:,其中;2、兩種標(biāo)準(zhǔn)方程可用一般形式表示: 或者 mx2+ny2=1三、橢圓的性質(zhì)(以為例)1、對(duì)稱性:對(duì)于橢圓標(biāo)準(zhǔn)方程:是以軸、軸為對(duì)稱軸的軸對(duì)稱圖形;并且是以原點(diǎn)為對(duì)稱中心的中心對(duì)稱圖形,這個(gè)對(duì)稱中心稱為橢圓的中心。2、范圍:
2、橢圓上所有的點(diǎn)都位于直線和所圍成的矩形內(nèi),所以橢圓上點(diǎn)的坐標(biāo)滿足,。3、頂點(diǎn):橢圓的對(duì)稱軸與橢圓的交點(diǎn)稱為橢圓的頂點(diǎn)。橢圓與坐標(biāo)軸的四個(gè)交點(diǎn)即為橢圓的四個(gè)頂點(diǎn),坐標(biāo)分別為,。 線段,分別叫做橢圓的長(zhǎng)軸和短軸,。和分別叫做橢圓的長(zhǎng)半軸長(zhǎng)和短半軸長(zhǎng)。4、離心率: 橢圓的焦距與長(zhǎng)軸長(zhǎng)度的比叫做橢圓的離心率,用表示,記作。 因?yàn)?,所以的取值范圍是。越接?,則就越接近,從而越小,因此橢圓越扁;反之,越接近于0,就越接近0,從而越接近于,這時(shí)橢圓就越接近于圓。 當(dāng)且僅當(dāng)時(shí),這時(shí)兩個(gè)焦點(diǎn)重合,圖形變?yōu)閳A,方程為。 離心率的大小只與橢圓本身的形狀有關(guān),與其所處的位置無(wú)關(guān)。注意:橢圓的圖像中線段的幾何特征(如
3、下圖): 5、橢圓的第二定義:平面內(nèi)與一個(gè)定點(diǎn)(焦點(diǎn))和一條定直線(準(zhǔn)線)的距離的比為常數(shù)e,(0e1)的點(diǎn)的軌跡為橢圓()。即:到焦點(diǎn)的距離與到準(zhǔn)線的距離的比為離心率的點(diǎn)所構(gòu)成的圖形,也即上圖中有。焦點(diǎn)在x軸上:(ab0)準(zhǔn)線方程:焦點(diǎn)在y軸上:(ab0)準(zhǔn)線方程:6、橢圓的內(nèi)外部需要更多的高考數(shù)學(xué)復(fù)習(xí)資料,請(qǐng)?jiān)谔?寶.上.搜.索.寶.貝. “高考復(fù)習(xí)資料 高中數(shù)學(xué) 知識(shí)點(diǎn)總結(jié) 例題精講(詳細(xì)解答)” 或者搜.店.鋪.“龍奇跡【學(xué)習(xí)資料網(wǎng)】”(1)點(diǎn)在橢圓的內(nèi)部(2)點(diǎn)在橢圓的外部四、橢圓的兩個(gè)標(biāo)準(zhǔn)方程的區(qū)別和聯(lián)系標(biāo)準(zhǔn)方程 圖形性質(zhì)焦點(diǎn),焦距范圍,對(duì)稱性關(guān)于軸、軸和原點(diǎn)對(duì)稱頂點(diǎn),軸長(zhǎng)長(zhǎng)軸長(zhǎng)=
4、,短軸長(zhǎng)=離心率準(zhǔn)線方程焦半徑,五、其他結(jié)論需要更多的高考數(shù)學(xué)復(fù)習(xí)資料,請(qǐng)?jiān)谔?寶.上.搜.索.寶.貝. “高考復(fù)習(xí)資料 高中數(shù)學(xué) 知識(shí)點(diǎn)總結(jié) 例題精講(詳細(xì)解答)” 或者搜.店.鋪.“龍奇跡【學(xué)習(xí)資料網(wǎng)】”1、若在橢圓上,則過(guò)的橢圓的切線方程是2、若在橢圓外 ,則過(guò)Po作橢圓的兩條切線切點(diǎn)為P1、P2,則切點(diǎn)弦P1P2的直線方程是3、橢圓 (ab0)的左右焦點(diǎn)分別為F1,F(xiàn) 2,點(diǎn)P為橢圓上任意一點(diǎn),則橢圓的焦點(diǎn)角形的面積為4、橢圓(ab0)的焦半徑公式:,( , )5、設(shè)過(guò)橢圓焦點(diǎn)F作直線與橢圓相交 P、Q兩點(diǎn),A為橢圓長(zhǎng)軸上一個(gè)頂點(diǎn),連結(jié)AP 和AQ分別交相應(yīng)于焦點(diǎn)F的橢圓準(zhǔn)線于M、N兩
5、點(diǎn),則MFNF。6、過(guò)橢圓一個(gè)焦點(diǎn)F的直線與橢圓交于兩點(diǎn)P、Q, A1、A2為橢圓長(zhǎng)軸上的頂點(diǎn),A1P和A2Q交于點(diǎn)M,A2P和A1Q交于點(diǎn)N,則MFNF。7、AB是橢圓的不平行于對(duì)稱軸的弦,M為AB的中點(diǎn),則,即。8、若在橢圓內(nèi),則被Po所平分的中點(diǎn)弦的方程是9、若在橢圓內(nèi),則過(guò)Po的弦中點(diǎn)的軌跡方程是【雙曲線】一、雙曲線的定義1、第一定義:到兩個(gè)定點(diǎn)F1與F2的距離之差的絕對(duì)值等于定長(zhǎng)(|F1F2|)的點(diǎn)的軌跡(為常數(shù))。這兩個(gè)定點(diǎn)叫雙曲線的焦點(diǎn)。 要注意兩點(diǎn):(1)距離之差的絕對(duì)值。(2)2a|F1F2|。 當(dāng)|MF1|MF2|=2a時(shí),曲線僅表示焦點(diǎn)F2所對(duì)應(yīng)的一支; 當(dāng)|MF1|MF
6、2|=2a時(shí),曲線僅表示焦點(diǎn)F1所對(duì)應(yīng)的一支; 當(dāng)2a=|F1F2|時(shí),軌跡是一直線上以F1、F2為端點(diǎn)向外的兩條射線;當(dāng)2a|F1F2|時(shí),動(dòng)點(diǎn)軌跡不存在。2、第二定義:動(dòng)點(diǎn)到一定點(diǎn)F的距離與它到一條定直線l的距離之比是常數(shù)e(e1)時(shí),這個(gè)動(dòng)點(diǎn)的軌跡是雙曲線。這定點(diǎn)叫做雙曲線的焦點(diǎn),定直線l叫做雙曲線的準(zhǔn)線。二、雙曲線的標(biāo)準(zhǔn)方程(,其中|=2c)需要更多的高考數(shù)學(xué)復(fù)習(xí)資料,請(qǐng)?jiān)谔?寶.上.搜.索.寶.貝. “高考復(fù)習(xí)資料 高中數(shù)學(xué) 知識(shí)點(diǎn)總結(jié) 例題精講(詳細(xì)解答)” 或者搜.店.鋪.“龍奇跡【學(xué)習(xí)資料網(wǎng)】”三、點(diǎn)與雙曲線的位置關(guān)系,直線與雙曲線的位置關(guān)系1、點(diǎn)與雙曲線2、直線與雙曲線四、雙
7、曲線與漸近線的關(guān)系五、雙曲線與切線方程六、雙曲線的性質(zhì)七、 弦長(zhǎng)公式1、若直線與圓錐曲線相交于兩點(diǎn)A、B,且分別為A、B的橫坐標(biāo),則,若分別為A、B的縱坐標(biāo),則。2、通徑的定義:過(guò)焦點(diǎn)且垂直于實(shí)軸的直線與雙曲線相交于A、B兩點(diǎn),則弦長(zhǎng)。3、若弦AB所在直線方程設(shè)為,則。4、特別地,焦點(diǎn)弦的弦長(zhǎng)的計(jì)算是將焦點(diǎn)弦轉(zhuǎn)化為兩條焦半徑之和后,利用第二定義求解八、焦半徑公式九、等軸雙曲線十、共軛雙曲線需要雙曲線的詳細(xì)資料,請(qǐng)?jiān)谔?寶.上.搜.索.寶.貝. “高考復(fù)習(xí)資料 高中數(shù)學(xué) 知識(shí)點(diǎn)總結(jié) 例題精講(詳細(xì)解答)” 或者搜.店.鋪.“龍奇跡【學(xué)習(xí)資料網(wǎng)】”【拋物線】一、拋物線的概念平面內(nèi)與一定點(diǎn)F和一條定
8、直線l (l不經(jīng)過(guò)點(diǎn)F) 距離相等的點(diǎn)的軌跡叫做拋物線。定點(diǎn)F叫做拋物線的焦點(diǎn),定直線l叫做拋物線的準(zhǔn)線。二、拋物線的性質(zhì)三、相關(guān)定義1、通徑:過(guò)拋物線的焦點(diǎn)且垂直于對(duì)稱軸的弦H1H2稱為通徑;通徑:|H1H2|=2P2、弦長(zhǎng)公式:3、焦點(diǎn)弦:過(guò)拋物線焦點(diǎn)的弦,若,則(1) x0+, (2),p2(3) 弦長(zhǎng),,即當(dāng)x1=x2時(shí),通徑最短為2p(4) 若AB的傾斜角為,則=(5)+=四、點(diǎn)、直線與拋物線的位置關(guān)系需要詳細(xì)的拋物線的資料,請(qǐng)?jiān)谔?寶.上.搜.索.寶.貝. “高考復(fù)習(xí)資料 高中數(shù)學(xué) 知識(shí)點(diǎn)總結(jié) 例題精講(詳細(xì)解答)” 或者搜.店.鋪.“龍奇跡【學(xué)習(xí)資料網(wǎng)】”【圓錐曲線與方程】一、圓
9、錐曲線的統(tǒng)一定義平面內(nèi)的動(dòng)點(diǎn)P(x,y)到一個(gè)定點(diǎn)F(c,0)的距離與到不通過(guò)這個(gè)定點(diǎn)的一條定直線的距離之比是一個(gè)常數(shù)e(e0),則動(dòng)點(diǎn)的軌跡叫做圓錐曲線。其中定點(diǎn)F(c,0)稱為焦點(diǎn),定直線稱為準(zhǔn)線,正常數(shù)e稱為離心率。當(dāng)0e1時(shí),軌跡為橢圓;當(dāng)e=1時(shí),軌跡為拋物線;當(dāng)e1時(shí),軌跡為雙曲線。 特別注意:當(dāng)時(shí),軌跡為圓(,當(dāng)時(shí))。二、橢圓、雙曲線、拋物線的標(biāo)準(zhǔn)方程與幾何性質(zhì)三、曲線與方程四、坐標(biāo)變換1、坐標(biāo)變換: 2、坐標(biāo)軸的平移:3、中心或頂點(diǎn)在(h,k)的圓錐曲線方程需要更多的高考數(shù)學(xué)復(fù)習(xí)資料,請(qǐng)?jiān)谔?寶.上.搜.索.寶.貝. “高考復(fù)習(xí)資料 高中數(shù)學(xué) 知識(shí)點(diǎn)總結(jié) 例題精講(詳細(xì)解答)”
10、 或者搜.店.鋪.“龍奇跡【學(xué)習(xí)資料網(wǎng)】”精講精練【例】以拋物線的焦點(diǎn)為右焦點(diǎn),且兩條漸近線是的雙曲線方程為_.解: 拋物線的焦點(diǎn)為,設(shè)雙曲線方程為,雙曲線方程為【例】雙曲線=1(bN)的兩個(gè)焦點(diǎn)F1、F2,P為雙曲線上一點(diǎn),|OP|5,|PF1|,|F1F2|,|PF2|成等比數(shù)列,則b2=_。解:設(shè)F1(c,0)、F2(c,0)、P(x,y),則|PF1|2+|PF2|2=2(|PO|2+|F1O|2)2(52+c2),即|PF1|2+|PF2|250+2c2,又|PF1|2+|PF2|2=(|PF1|PF2|)2+2|PF1|·|PF2|,依雙曲線定義,有|PF1|PF2|=4
11、,依已知條件有|PF1|·|PF2|=|F1F2|2=4c2 16+8c250+2c2,c2,又c2=4+b2,b2,b2=1?!纠慨?dāng)取何值時(shí),直線:與橢圓相切,相交,相離?解: 代入得化簡(jiǎn)得當(dāng)即時(shí),直線與橢圓相切;當(dāng),即時(shí),直線與橢圓相交;當(dāng),即或時(shí),直線與橢圓相離?!纠恳阎獧E圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)焦點(diǎn)為F,M是橢圓上的任意點(diǎn),|MF|的最大值和最小值的幾何平均數(shù)為2,橢圓上存在著以y=x為軸的對(duì)稱點(diǎn)M1和M2,且|M1M2|=,試求橢圓的方程。解:|MF|max=a+c,|MF|min=ac,則(a+c)(ac)=a2c2=b2,b2=4,設(shè)橢圓方程為設(shè)過(guò)
12、M1和M2的直線方程為y=x+m將代入得:(4+a2)x22a2mx+a2m24a2=0設(shè)M1(x1,y1)、M2(x2,y2),M1M2的中點(diǎn)為(x0,y0),則x0= (x1+x2)=,y0=x0+m=。代入y=x,得,由于a24,m=0,由知x1+x2=0,x1x2=,又|M1M2|=,代入x1+x2,x1x2可解a2=5,故所求橢圓方程為: =1?!纠磕硳佄锞€形拱橋跨度是20米,拱高4米,在建橋時(shí)每隔4米需用一支柱支撐,求其中最長(zhǎng)的支柱的長(zhǎng)。需要更多的高考數(shù)學(xué)復(fù)習(xí)資料,請(qǐng)?jiān)谔?寶.上.搜.索.寶.貝. “高考復(fù)習(xí)資料 高中數(shù)學(xué) 知識(shí)點(diǎn)總結(jié) 例題精講(詳細(xì)解答)” 或者搜.店.鋪.“龍
13、奇跡【學(xué)習(xí)資料網(wǎng)】” 解:以拱頂為原點(diǎn),水平線為x軸,建立坐標(biāo)系,如圖,由題意知,|AB|=20,|OM|=4,A、B坐標(biāo)分別為(10,4)、(10,4)設(shè)拋物線方程為x2=2py,將A點(diǎn)坐標(biāo)代入,得100=2p×(4),解得p=12。5,于是拋物線方程為x2=25y。由題意知E點(diǎn)坐標(biāo)為(2,4),E點(diǎn)橫坐標(biāo)也為2,將2代入得y=0。16,從而|EE|=(0.16)(4)=3.84。故最長(zhǎng)支柱長(zhǎng)應(yīng)為3.84米?!纠恳阎獧E圓的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在坐標(biāo)軸上,直線y=x+1與橢圓交于P和Q,且OPOQ,|PQ|=,求橢圓方程。解:設(shè)橢圓方程為mx2+ny2=1(m0,n0),P(x1
14、,y1),Q(x2,y2)由 得(m+n)x2+2nx+n1=0,=4n24(m+n)(n1)0,即m+nmn0,由OPOQ,所以x1x2+y1y2=0,即2x1x2+(x1+x2)+1=0,+1=0,m+n=2又22,將m+n=2,代入得m·n=由、式得m=,n=或m=,n=故橢圓方程為+y2=1或x2+y2=1?!纠恳阎獔AC1的方程為,橢圓C2的方程為,C2的離心率為,如果C1與C2相交于A、B兩點(diǎn),且線段AB恰為圓C1的直徑,求直線AB的方程和橢圓C2的方程。解:由設(shè)橢圓方程為設(shè) 又 兩式相減,得 又即將需要更多的高考數(shù)學(xué)復(fù)習(xí)資料,請(qǐng)?jiān)谔?寶.上.搜.索.寶.貝. “高考復(fù)習(xí)
15、資料 高中數(shù)學(xué) 知識(shí)點(diǎn)總結(jié) 例題精講(詳細(xì)解答)” 或者搜.店.鋪.“龍奇跡【學(xué)習(xí)資料網(wǎng)】”由得解得 故所有橢圓方程【例】過(guò)點(diǎn)(1,0)的直線l與中心在原點(diǎn),焦點(diǎn)在x軸上且離心率為的橢圓C相交于A、B兩點(diǎn),直線y=x過(guò)線段AB的中點(diǎn),同時(shí)橢圓C上存在一點(diǎn)與右焦點(diǎn)關(guān)于直線l對(duì)稱,試求直線l與橢圓C的方程。解法一:由e=,得,從而a2=2b2,c=b。設(shè)橢圓方程為x2+2y2=2b2,A(x1,y1),B(x2,y2)在橢圓上。則x12+2y12=2b2,x22+2y22=2b2,兩式相減得,(x12x22)+2(y12y22)=0,設(shè)AB中點(diǎn)為(x0,y0),則kAB=,又(x0,y0)在直線y
16、=x上,y0=x0,于是=1,kAB=1,設(shè)l的方程為y=x+1。右焦點(diǎn)(b,0)關(guān)于l的對(duì)稱點(diǎn)設(shè)為(x,y),由點(diǎn)(1,1b)在橢圓上,得1+2(1b)2=2b2,b2=。所求橢圓C的方程為 =1,l的方程為y=x+1。解法二:需要更多的高考數(shù)學(xué)復(fù)習(xí)資料,請(qǐng)?jiān)谔?寶.上.搜.索.寶.貝. “高考復(fù)習(xí)資料 高中數(shù)學(xué) 知識(shí)點(diǎn)總結(jié) 例題精講(詳細(xì)解答)” 或者搜.店.鋪.“龍奇跡【學(xué)習(xí)資料網(wǎng)】”由e=,從而a2=2b2,c=b。設(shè)橢圓C的方程為x2+2y2=2b2,l的方程為y=k(x1),將l的方程代入C的方程,得(1+2k2)x24k2x+2k22b2=0,則x1+x2=,y1+y2=k(x1
17、1)+k(x21)=k(x1+x2)2k=。直線l:y=x過(guò)AB的中點(diǎn)(),則,解得k=0,或k=1。若k=0,則l的方程為y=0,焦點(diǎn)F(c,0)關(guān)于直線l的對(duì)稱點(diǎn)就是F點(diǎn)本身,不能在橢圓C上,所以k=0舍去,從而k=1,直線l的方程為y=(x1),即y=x+1,以下同解法一。解法三:設(shè)橢圓方程為直線不平行于y軸,否則AB中點(diǎn)在x軸上與直線中點(diǎn)矛盾。故可設(shè)直線, ,則, 所以所求的橢圓方程為:【例】如圖,已知P1OP2的面積為,P為線段P1P2的一個(gè)三等分點(diǎn),求以直線OP1、OP2為漸近線且過(guò)點(diǎn)P的離心率為的雙曲線方程。解:以O(shè)為原點(diǎn),P1OP2的角平分線為x軸建立如圖所示的直角坐標(biāo)系。設(shè)雙
18、曲線方程為=1(a0,b0),由e2=,得。兩漸近線OP1、OP2方程分別為y=x和y=x設(shè)點(diǎn)P1(x1, x1),P2(x2,x2)(x10,x20),則由點(diǎn)P分所成的比=2,得P點(diǎn)坐標(biāo)為(),又點(diǎn)P在雙曲線=1上,所以=1,即(x1+2x2)2(x12x2)2=9a2,整理得8x1x2=9a2 即x1x2= 由、得a2=4,b2=9。 故雙曲線方程為=1?!纠啃枰嗟母呖紨?shù)學(xué)復(fù)習(xí)資料,請(qǐng)?jiān)谔?寶.上.搜.索.寶.貝. “高考復(fù)習(xí)資料 高中數(shù)學(xué) 知識(shí)點(diǎn)總結(jié) 例題精講(詳細(xì)解答)” 或者搜.店.鋪.“龍奇跡【學(xué)習(xí)資料網(wǎng)】”過(guò)橢圓C:上一動(dòng)點(diǎn)P引圓O:x2 +y2 =b2的兩條切線PA、PB
19、,A、B為切點(diǎn),直線AB與x軸,y軸分別交于M、N兩點(diǎn)。(1) 已知P點(diǎn)坐標(biāo)為(x0,y0 )并且x0y00,試求直線AB方程;(2) 若橢圓的短軸長(zhǎng)為8,并且,求橢圓C的方程;(3) 橢圓C上是否存在點(diǎn)P,由P向圓O所引兩條切線互相垂直?若存在,請(qǐng)求出存在的條件;若不存在,請(qǐng)說(shuō)明理由。解:(1)設(shè)A(x1,y1),B(x2, y2) 切線PA:,PB:P點(diǎn)在切線PA、PB上,直線AB的方程為(2)在直線AB方程中,令y=0,則M(,0);令x=0,則N(0,) 2b=8 b=4 代入得a2 =25, b2 =16橢圓C方程: (3) 假設(shè)存在點(diǎn)P(x0,y0)滿足PAPB,連接OA、OB由|
20、PA|=|PB|知,四邊形PAOB為正方形,|OP|=|OA| 又P點(diǎn)在橢圓C上 由知x a>b>0 a2 b2>0(1)當(dāng)a22b2>0,即a>b時(shí),橢圓C上存在點(diǎn),由P點(diǎn)向圓所引兩切線互相垂直;(2)當(dāng)a22b2<0,即b<a<b時(shí),橢圓C上不存在滿足條件的P點(diǎn)【例】已知點(diǎn)B(1,0),C(1,0),P是平面上一動(dòng)點(diǎn),且滿足(1)求點(diǎn)P的軌跡C對(duì)應(yīng)的方程;(2)已知點(diǎn)A(m,2)在曲線C上,過(guò)點(diǎn)A作曲線C的兩條弦AD和AE,且ADAE,判斷:直線DE是否過(guò)定點(diǎn)?試證明你的結(jié)論。(3)已知點(diǎn)A(m,2)在曲線C上,過(guò)點(diǎn)A作曲線C的兩條弦AD,A
21、E,且AD,AE的斜率k1、k2滿足k1·k2=2。求證:直線DE過(guò)定點(diǎn),并求出這個(gè)定點(diǎn)。解:(1)設(shè)【例】需要更多的高考數(shù)學(xué)復(fù)習(xí)資料,請(qǐng)?jiān)谔?寶.上.搜.索.寶.貝. “高考復(fù)習(xí)資料 高中數(shù)學(xué) 知識(shí)點(diǎn)總結(jié) 例題精講(詳細(xì)解答)” 或者搜.店.鋪.“龍奇跡【學(xué)習(xí)資料網(wǎng)】”已知曲線,直線l過(guò)A(a,0)、B(0,b)兩點(diǎn),原點(diǎn)O到l的距離是()求雙曲線的方程;()過(guò)點(diǎn)B作直線m交雙曲線于M、N兩點(diǎn),若,求直線m的方程。解:()依題意, 由原點(diǎn)O到l的距離為,得 又 。 故所求雙曲線方程為()顯然直線m不與x軸垂直,設(shè)m方程為y=kx1,則點(diǎn)M、N坐標(biāo)()、()是方程組 的解消去y,得
22、依設(shè),由根與系數(shù)關(guān)系,知= = =23,k=±。 當(dāng)k=±時(shí),方程有兩個(gè)不等的實(shí)數(shù)根故直線l方程為 【例】已知?jiǎng)狱c(diǎn)與雙曲線的兩個(gè)焦點(diǎn)、的距離之和為定值,且的最小值為(1)求動(dòng)點(diǎn)的軌跡方程; (2)若已知,、在動(dòng)點(diǎn)的軌跡上且,求實(shí)數(shù)的取值范圍解:(1)由已知可得: , 所求的橢圓方程為 。 (2)方法一:由題知點(diǎn)D、M、N共線,設(shè)為直線m,當(dāng)直線m的斜率存在時(shí),設(shè)為k,則直線m的方程為 y = k x +3 代入前面的橢圓方程得 (4+9k 2) x 2 +54 k +45 = 0 由判別式 ,得。 再設(shè)M (x 1 , y 1 ), N ( x 2 , y 2),則一方面有
23、,得 另一方面有 , 將代入式并消去 x 2可得,由前面知, ,解得 。 又當(dāng)直線m的斜率不存在時(shí),不難驗(yàn)證:,所以 為所求。方法二:同上得 設(shè)點(diǎn)M (3cos,2sin),N (3cos,2sin) 則有由上式消去并整理得, 由于 , 解得為所求。 需要更多的高考數(shù)學(xué)復(fù)習(xí)資料,請(qǐng)?jiān)谔?寶.上.搜.索.寶.貝. “高考復(fù)習(xí)資料 高中數(shù)學(xué) 知識(shí)點(diǎn)總結(jié) 例題精講(詳細(xì)解答)” 或者搜.店.鋪.“龍奇跡【學(xué)習(xí)資料網(wǎng)】”方法三:設(shè)法求出橢圓上的點(diǎn)到點(diǎn)D的距離的最大值為5,最小值為1。進(jìn)而推得的取值范圍為?!纠?如圖所示,拋物線y2=4x的頂點(diǎn)為O,點(diǎn)A的坐標(biāo)為(5,0),傾斜角為的直線l與線段OA相
24、交(不經(jīng)過(guò)點(diǎn)O或點(diǎn)A)且交拋物線于M、N兩點(diǎn),求AMN面積最大時(shí)直線l的方程,并求AMN的最大面積。解:由題意,可設(shè)l的方程為y=x+m,5m0。由方程組,消去y,得x2+(2m4)x+m2=0直線l與拋物線有兩個(gè)不同交點(diǎn)M、N,方程的判別式=(2m4)24m2=16(1m)0,解得m1,又5m0,m的范圍為(5,0)設(shè)M(x1,y1),N(x2,y2)則x1+x2=42m,x1·x2=m2,|MN|=4。點(diǎn)A到直線l的距離為d=。S=2(5+m),從而S2=4(1m)(5+m)2=2(22m)·(5+m)(5+m)2()3=128。S8,當(dāng)且僅當(dāng)22m=5+m,即m=1時(shí)
25、取等號(hào)。故直線l的方程為y=x1,AMN的最大面積為8?!纠恳阎p曲線C:2x2y2=2與點(diǎn)P(1,2)。(1)求過(guò)P(1,2)點(diǎn)的直線l的斜率取值范圍,使l與C分別有一個(gè)交點(diǎn),兩個(gè)交點(diǎn),沒有交點(diǎn)。(2)若Q(1,1),試判斷以Q為中點(diǎn)的弦是否存在。解:(1)當(dāng)直線l的斜率不存在時(shí),l的方程為x=1,與曲線C有一個(gè)交點(diǎn)。當(dāng)l的斜率存在時(shí),設(shè)直線l的方程為y2=k(x1),代入C的方程,并整理得(2k2)x2+2(k22k)xk2+4k6=0(*)()當(dāng)2k2=0,即k=±時(shí),方程(*)有一個(gè)根,l與C有一個(gè)交點(diǎn)()當(dāng)2k20,即k±時(shí)=2(k22k)24(2k2)(k2+
26、4k6)=16(32k)當(dāng)=0,即32k=0,k=時(shí),方程(*)有一個(gè)實(shí)根,l與C有一個(gè)交點(diǎn)。當(dāng)0,即k,又k±,故當(dāng)k或k或k時(shí),方程(*)有兩不等實(shí)根,l與C有兩個(gè)交點(diǎn)。當(dāng)0,即k時(shí),方程(*)無(wú)解,l與C無(wú)交點(diǎn)。綜上知:當(dāng)k=±,或k=,或k不存在時(shí),l與C只有一個(gè)交點(diǎn);當(dāng)k,或k,或k時(shí),l與C有兩個(gè)交點(diǎn);當(dāng)k時(shí),l與C沒有交點(diǎn)。(2)假設(shè)以Q為中點(diǎn)的弦存在,設(shè)為AB,且A(x1,y1),B(x2,y2),則2x12y12=2,2x22y22=2兩式相減得:2(x1x2)(x1+x2)=(y1y2)(y1+y2)又x1+x2=2,y1+y2=22(x1x2)=y1y
27、1即kAB=2但漸近線斜率為±,結(jié)合圖形知直線AB與C無(wú)交點(diǎn),所以假設(shè)不正確,即以Q為中點(diǎn)的弦不存在?!纠恳阎p曲線G的中心在原點(diǎn),它的漸近線與圓相切過(guò)點(diǎn)作斜率為的直線,使得和交于兩點(diǎn),和軸交于點(diǎn),并且點(diǎn)在線段上,又滿足(1)求雙曲線的漸近線的方程;(2)求雙曲線的方程;(3)橢圓的中心在原點(diǎn),它的短軸是的實(shí)軸如果中垂直于的平行弦的中點(diǎn)的軌跡恰好是的漸近線截在內(nèi)的部分,求橢圓的方程解:(1)設(shè)雙曲線的漸近線的方程為:,則由漸近線與圓相切可得:所以,雙曲線的漸近線的方程為:(2)由(1)可設(shè)雙曲線的方程為:把直線的方程代入雙曲線方程,整理得則 () ,共線且在線段上, ,即:,整理得
28、:將()代入上式可解得:所以,雙曲線的方程為(3)由題可設(shè)橢圓的方程為:下面我們來(lái)求出中垂直于的平行弦中點(diǎn)的軌跡需要更多的高考數(shù)學(xué)復(fù)習(xí)資料,請(qǐng)?jiān)谔?寶.上.搜.索.寶.貝. “高考復(fù)習(xí)資料 高中數(shù)學(xué) 知識(shí)點(diǎn)總結(jié) 例題精講(詳細(xì)解答)” 或者搜.店.鋪.“龍奇跡【學(xué)習(xí)資料網(wǎng)】”設(shè)弦的兩個(gè)端點(diǎn)分別為,的中點(diǎn)為,則兩式作差得:由于, 所以,所以,垂直于的平行弦中點(diǎn)的軌跡為直線截在橢圓S內(nèi)的部分又由題,這個(gè)軌跡恰好是的漸近線截在內(nèi)的部分,所以,所以,橢圓S的方程為:點(diǎn)評(píng):解決直線與圓錐曲線的問(wèn)題時(shí),把直線投影到坐標(biāo)軸上(也即化線段的關(guān)系為橫坐標(biāo)(或縱坐標(biāo))之間的關(guān)系)是常用的簡(jiǎn)化問(wèn)題的手段;有關(guān)弦中點(diǎn)
29、的問(wèn)題,常常用到“設(shè)而不求”的方法;判別式和韋達(dá)定理是解決直線與圓錐曲線問(wèn)題的常用工具)【例】已知橢圓C的中心為直角坐標(biāo)系xOy的原點(diǎn),焦點(diǎn)在s軸上,它的一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)的距離分別是7和1。需要更多的高考數(shù)學(xué)復(fù)習(xí)資料,請(qǐng)?jiān)谔?寶.上.搜.索.寶.貝. “高考復(fù)習(xí)資料 高中數(shù)學(xué) 知識(shí)點(diǎn)總結(jié) 例題精講(詳細(xì)解答)” 或者搜.店.鋪.“龍奇跡【學(xué)習(xí)資料網(wǎng)】”()求橢圓C的方程;()若P為橢圓C上的動(dòng)點(diǎn),M為過(guò)P且垂直于x軸的直線上的點(diǎn),=,求點(diǎn)M的軌跡方程,并說(shuō)明軌跡是什么曲線。 需要更多的高考數(shù)學(xué)復(fù)習(xí)資料,請(qǐng)?jiān)谔?寶.上.搜.索.寶.貝. “高考復(fù)習(xí)資料 高中數(shù)學(xué) 知識(shí)點(diǎn)總結(jié) 例題精講(詳細(xì)解答
30、)” 或者搜.店.鋪.“龍奇跡【學(xué)習(xí)資料網(wǎng)】”解:()設(shè)橢圓長(zhǎng)半軸長(zhǎng)及半焦距分別為,由已知得,w。w。w。k。s。5。u。c。o。m 所以橢圓的標(biāo)準(zhǔn)方程為 ()設(shè),其中。由已知及點(diǎn)在橢圓上可得。整理得,其中。(i)時(shí)?;?jiǎn)得 所以點(diǎn)的軌跡方程為,軌跡是兩條平行于軸的線段。(ii)時(shí),方程變形為,其中當(dāng)時(shí),點(diǎn)的軌跡為中心在原點(diǎn)、實(shí)軸在軸上的雙曲線滿足的部分。當(dāng)時(shí),點(diǎn)的軌跡為中心在原點(diǎn)、長(zhǎng)軸在軸上的橢圓滿足的部分;當(dāng)時(shí),點(diǎn)的軌跡為中心在原點(diǎn)、長(zhǎng)軸在軸上的橢圓;【例】已知橢圓的離心率為,過(guò)右焦點(diǎn)F的直線L與C相交于A、B兩點(diǎn),當(dāng)L的斜率為1時(shí),坐標(biāo)原點(diǎn)O到L的距離為。() 求a,b的值;() C上是
31、否存在點(diǎn)P,使得當(dāng)L繞F轉(zhuǎn)到某一位置時(shí),有成立?若存在,求出所有的P的坐標(biāo)與L的方程;若不存在,說(shuō)明理由考點(diǎn):本題考查解析幾何與平面向量知識(shí)綜合運(yùn)用能力,第一問(wèn)直接運(yùn)用點(diǎn)到直線的距離公式以及橢圓有關(guān)關(guān)系式計(jì)算,第二問(wèn)利用向量坐標(biāo)關(guān)系及方程的思想,借助根與系數(shù)關(guān)系解決問(wèn)題,注意特殊情況的處理。解:()設(shè) 當(dāng)?shù)男甭蕿?時(shí),其方程為到的距離為 。 故 , 由 ,得 ,=()C上存在點(diǎn),使得當(dāng)繞轉(zhuǎn)到某一位置時(shí),有成立。由 ()知C的方程為+=6。 設(shè) () C成立的充要條件是且整理得 。 故 將 于是 , =,代入解得,此時(shí)。 于是=, 即因此, 當(dāng)時(shí), ;當(dāng)時(shí), 。()當(dāng)垂直于軸時(shí),由知,C上不存在點(diǎn)P使成立。綜上,C上存在點(diǎn)使成立,此時(shí)的方程為【例】已知橢圓:的右頂點(diǎn)為,過(guò)的焦點(diǎn)且垂直長(zhǎng)軸的弦長(zhǎng)為(I)求橢圓的方程;(II)設(shè)點(diǎn)在拋物線:上,在點(diǎn)處的切
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年醫(yī)療設(shè)備采購(gòu)使用及技術(shù)培訓(xùn)合同
- 2024年城市供水排水設(shè)施建設(shè)與運(yùn)營(yíng)管理合作協(xié)議
- 地鐵建設(shè)臨時(shí)排水方案
- 2024年健身服務(wù)與會(huì)員合同
- 2024年城市環(huán)境整治廣告牌拆卸合同
- 2024年云計(jì)算中心運(yùn)營(yíng)管理合同
- 2024年國(guó)內(nèi)沿海集裝箱貨運(yùn)代理合同
- 2024年園林綠化工程設(shè)計(jì)與施工合同
- TFT系列偏光片相關(guān)行業(yè)投資規(guī)劃報(bào)告
- 2024年臨沂沂州醫(yī)院技術(shù)合作與交流協(xié)議
- 產(chǎn)品可追溯性模擬演練(成品-原料)記錄
- 《會(huì)計(jì)檔案管理辦法》講解課件(PPT 79頁(yè))
- 車床PLC改造DOC
- 物業(yè)與裝修公司合作計(jì)劃ppt課件
- 2019CSCO 乳腺癌指南骨轉(zhuǎn)移、腦轉(zhuǎn)移等指南
- 蘇教版小學(xué)生五年級(jí)上冊(cè)英語(yǔ)期中試卷
- PLC控制的自動(dòng)花樣音樂噴泉系統(tǒng)設(shè)計(jì)畢業(yè)設(shè)計(jì)論文
- 保密工作責(zé)任告知書
- 2022鄉(xiāng)鎮(zhèn)野豬狩獵活動(dòng)工作方案
- 建筑公司組織架構(gòu)及崗位職責(zé)
- 4M1E境變更管理規(guī)定(共4頁(yè))
評(píng)論
0/150
提交評(píng)論