高中數(shù)學全知識點歸納總結(jié)(新課標人教A版)._第1頁
高中數(shù)學全知識點歸納總結(jié)(新課標人教A版)._第2頁
高中數(shù)學全知識點歸納總結(jié)(新課標人教A版)._第3頁
高中數(shù)學全知識點歸納總結(jié)(新課標人教A版)._第4頁
高中數(shù)學全知識點歸納總結(jié)(新課標人教A版)._第5頁
已閱讀5頁,還剩34頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、高中數(shù)學必修+選修知識點歸納新課標人教A版紙上得來終覺淺 絕知此事要躬行 引言1.課程內(nèi)容:必修課程由5個模塊組成:必修1:集合、函數(shù)概念與基本初等函數(shù)(指、對、冪函數(shù))必修2:立體幾何初步、平面解析幾何初步。必修3:算法初步、統(tǒng)計、概率。必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。必修5:解三角形、數(shù)列、不等式。以上是每一個高中學生所必須學習的。上述內(nèi)容覆蓋了高中階段傳統(tǒng)的數(shù)學基礎(chǔ)知識和基本技能的主要部分,其中包括集合、函數(shù)、數(shù)列、不等式、解三角形、立體幾何初步、平面解析幾何初步等。不同的是在保證打好基礎(chǔ)的同時,進一步強調(diào)了這些知識的發(fā)生、發(fā)展過程和實際應用,而不在技巧與難度上

2、做過高的要求。 此外,基礎(chǔ)內(nèi)容還增加了向量、算法、概率、統(tǒng)計等內(nèi)容。選修課程有4個系列:系列1:由2個模塊組成。選修11:常用邏輯用語、圓錐曲線與方程、導數(shù)及其應用。選修12:統(tǒng)計案例、推理與證明、數(shù)系的擴充與復數(shù)、框圖系列2:由3個模塊組成。選修21:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何。選修22:導數(shù)及其應用,推理與證明、數(shù)系的擴充與復數(shù)選修23:計數(shù)原理、隨機變量及其分布列,統(tǒng)計案例。系列3:由6個專題組成。選修31:數(shù)學史選講。選修32:信息安全與密碼。選修33:球面上的幾何。選修34:對稱與群。選修35:歐拉公式與閉曲面分類。選修36:三等分角與數(shù)域擴充。系列4:由10個

3、專題組成。選修41:幾何證明選講。選修42:矩陣與變換。選修43:數(shù)列與差分。選修44:坐標系與參數(shù)方程。選修45:不等式選講。選修46:初等數(shù)論初步。選修47:優(yōu)選法與試驗設(shè)計初步。選修48:統(tǒng)籌法與圖論初步。選修49:風險與決策。選修410:開關(guān)電路與布爾代數(shù)。2重難點及考點:重點:函數(shù),數(shù)列,三角函數(shù),平面向量,圓錐曲線,立體幾何,導數(shù)難點:函數(shù)、圓錐曲線高考相關(guān)考點:集合與簡易邏輯:集合的概念與運算、簡易邏輯、充要條件函數(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)與指數(shù)函數(shù)、對數(shù)與對數(shù)函數(shù)、函數(shù)的應用數(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求和

4、、數(shù)列的應用三角函數(shù):有關(guān)概念、同角關(guān)系與誘導公式、和、差、倍、半公式、求值、化簡、證明、三角函數(shù)的圖象與性質(zhì)、三角函數(shù)的應用平面向量:有關(guān)概念與初等運算、坐標運算、數(shù)量積及其應用不等式:概念與性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對值不等式、不等式的應用直線和圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的位置關(guān)系圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問題、圓錐曲線的應用直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量排列、組合和概率:排列、組合應用題、二項式定理及其應用概率與統(tǒng)計:概率、分布列、期望、方

5、差、抽樣、正態(tài)分布導數(shù):導數(shù)的概念、求導、導數(shù)的應用復數(shù):復數(shù)的概念與運算必修1數(shù)學知識點第一章:集合與函數(shù)概念§1.1.1、集合1、 把研究的對象統(tǒng)稱為元素,把一些元素組成的總體叫做集合。集合三要素:確定性、互異性、無序性。2、 只要構(gòu)成兩個集合的元素是一樣的,就稱這兩個集合相等。3、 常見集合:正整數(shù)集合:或,整數(shù)集合:,有理數(shù)集合:,實數(shù)集合:.4、集合的表示方法:列舉法、描述法.§1.1.2、集合間的基本關(guān)系1、 一般地,對于兩個集合A、B,如果集合A中任意一個元素都是集合B中的元素,則稱集合A是集合B的子集。記作.2、 如果集合,但存在元素,且,則稱集合A是集合B

6、的真子集.記作:AB.3、 把不含任何元素的集合叫做空集.記作:.并規(guī)定:空集合是任何集合的子集.4、 如果集合A中含有n個元素,則集合A有個子集,個真子集.§1.1.3、集合間的基本運算1、 一般地,由所有屬于集合A或集合B的元素組成的集合,稱為集合A與B的并集.記作:.2、 一般地,由屬于集合A且屬于集合B的所有元素組成的集合,稱為A與B的交集.記作:.3、全集、補集?§1.2.1、函數(shù)的概念1、 設(shè)A、B是非空的數(shù)集,如果按照某種確定的對應關(guān)系,使對于集合A中的任意一個數(shù),在集合B中都有惟一確定的數(shù)和它對應,那么就稱為集合A到集合B的一個函數(shù),記作:.2、 一個函數(shù)的

7、構(gòu)成要素為:定義域、對應關(guān)系、值域.如果兩個函數(shù)的定義域相同,并且對應關(guān)系完全一致,則稱這兩個函數(shù)相等.§1.2.2、函數(shù)的表示法1、 函數(shù)的三種表示方法:解析法、圖象法、列表法.§1.3.1、單調(diào)性與最大(?。┲?、注意函數(shù)單調(diào)性的證明方法:(1)定義法:設(shè)那么上是增函數(shù);上是減函數(shù).步驟:取值作差變形定號判斷格式:解:設(shè)且,則:= (2)導數(shù)法:設(shè)函數(shù)在某個區(qū)間內(nèi)可導,若,則為增函數(shù);若,則為減函數(shù).§1.3.2、奇偶性1、 一般地,如果對于函數(shù)的定義域內(nèi)任意一個,都有,那么就稱函數(shù)為偶函數(shù).偶函數(shù)圖象關(guān)于軸對稱.2、 一般地,如果對于函數(shù)的定義域內(nèi)任意一個,

8、都有,那么就稱函數(shù)為奇函數(shù).奇函數(shù)圖象關(guān)于原點對稱.知識鏈接:函數(shù)與導數(shù)1、函數(shù)在點處的導數(shù)的幾何意義:函數(shù)在點處的導數(shù)是曲線在處的切線的斜率,相應的切線方程是.2、幾種常見函數(shù)的導數(shù); ; ; ; ;3、導數(shù)的運算法則(1). (2). (3).4、復合函數(shù)求導法則復合函數(shù)的導數(shù)和函數(shù)的導數(shù)間的關(guān)系為,即對的導數(shù)等于對的導數(shù)與對的導數(shù)的乘積.解題步驟:分層層層求導作積還原.5、函數(shù)的極值 (1)極值定義:極值是在附近所有的點,都有,則是函數(shù)的極大值; 極值是在附近所有的點,都有,則是函數(shù)的極小值.(2)判別方法:圖象性質(zhì)(1)定義域:R(2)值域:(0,+)(3)過定點(0,1),即x=0時

9、,y=1(4)在 R上是增函數(shù)(4)在R上是減函數(shù)(5);(5);如果在附近的左側(cè)0,右側(cè)0,那么是極大值;如果在附近的左側(cè)0,右側(cè)0,那么是極小值.6、求函數(shù)的最值 (1)求在內(nèi)的極值(極大或者極小值)(2)將的各極值點與比較,其中最大的一個為最大值,最小的一個為極小值。注:極值是在局部對函數(shù)值進行比較(局部性質(zhì));最值是在整體區(qū)間上對函數(shù)值進行比較(整體性質(zhì))。第二章:基本初等函數(shù)()§2.1.1、指數(shù)與指數(shù)冪的運算1、 一般地,如果,那么叫做 的次方根。其中.2、 當為奇數(shù)時,;當為偶數(shù)時,.3、 我們規(guī)定: ;4、 運算性質(zhì): ;.§2.1.2、指數(shù)函數(shù)及其性質(zhì)1、

10、記住圖象:2、性質(zhì):§2.2.1、對數(shù)與對數(shù)運算1、指數(shù)與對數(shù)互化式:;2、對數(shù)恒等式:.3、基本性質(zhì):,.4、運算性質(zhì):當時:;.5、換底公式:.6、重要公式:7、倒數(shù)關(guān)系:.§2.2.2、對數(shù)函數(shù)及其性質(zhì)1、記住圖象:2、性質(zhì):圖象性質(zhì)(1)定義域:(0,+)(2)值域:R(3)過定點(1,0),即x=1時,y=0(4)在 (0,+)上是增函數(shù)(4)在(0,+)上是減函數(shù)(5);(5);§2.3、冪函數(shù)1、幾種冪函數(shù)的圖象:第三章:函數(shù)的應用§3.1.1、方程的根與函數(shù)的零點1、方程有實根 函數(shù)的圖象與軸有交點 函數(shù)有零點.2、 零點存在性定理:如果

11、函數(shù)在區(qū)間 上的圖象是連續(xù)不斷的一條曲線,并且有,那么函數(shù)在區(qū)間內(nèi)有零點,即存在,使得,這個也就是方程的根.§3.1.2、用二分法求方程的近似解1、掌握二分法.§3.2.1、幾類不同增長的函數(shù)模型§3.2.2、函數(shù)模型的應用舉例1、解決問題的常規(guī)方法:先畫散點圖,再用適當?shù)暮瘮?shù)擬合,最后檢驗.必修2數(shù)學知識點第一章:空間幾何體1、空間幾何體的結(jié)構(gòu)常見的多面體有:棱柱、棱錐、棱臺;常見的旋轉(zhuǎn)體有:圓柱、圓錐、圓臺、球。棱柱:有兩個面互相平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的多面體叫做棱柱。棱臺:用一個平行于棱錐底面的平面去

12、截棱錐,底面與截面之間的部分,這樣的多面體叫做棱臺。2、空間幾何體的三視圖和直觀圖把光由一點向外散射形成的投影叫中心投影,中心投影的投影線交于一點;把在一束平行光線照射下的投影叫平行投影,平行投影的投影線是平行的。3、空間幾何體的表面積與體積圓柱側(cè)面積;圓錐側(cè)面積:圓臺側(cè)面積:體積公式:;球的表面積和體積:.第二章:點、直線、平面之間的位置關(guān)系1、公理1:如果一條直線上兩點在一個平面內(nèi),那么這條直線在此平面內(nèi)。2、公理2:過不在一條直線上的三點,有且只有一個平面。3、公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。4、公理4:平行于同一條直線的兩條直線平行.5、

13、定理:空間中如果兩個角的兩邊分別對應平行,那么這兩個角相等或互補。6、線線位置關(guān)系:平行、相交、異面。7、線面位置關(guān)系:直線在平面內(nèi)、直線和平面平行、直線和平面相交。8、面面位置關(guān)系:平行、相交。9、線面平行:判定:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行(簡稱線線平行,則線面平行)。性質(zhì):一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行(簡稱線面平行,則線線平行)。10、面面平行:判定:一個平面內(nèi)的兩條相交直線與另一個平面平行,則這兩個平面平行(簡稱線面平行,則面面平行)。性質(zhì):如果兩個平行平面同時和第三個平面相交,那么它們的交線平行(簡稱面面平行

14、,則線線平行)。11、線面垂直:定義:如果一條直線垂直于一個平面內(nèi)的任意一條直線,那么就說這條直線和這個平面垂直。判定:一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直(簡稱線線垂直,則線面垂直)。性質(zhì):垂直于同一個平面的兩條直線平行。12、面面垂直:定義:兩個平面相交,如果它們所成的二面角是直二面角,就說這兩個平面互相垂直。判定:一個平面經(jīng)過另一個平面的一條垂線,則這兩個平面垂直(簡稱線面垂直,則面面垂直)。性質(zhì):兩個平面互相垂直,則一個平面內(nèi)垂直于交線的直線垂直于另一個平面。(簡稱面面垂直,則線面垂直)。第三章:直線與方程1、傾斜角與斜率:2、直線方程:點斜式:斜截式:兩點式

15、:截距式:一般式:3、對于直線:有:;和相交;和重合;.4、對于直線:有:;和相交;和重合;.5、兩點間距離公式:6、點到直線距離公式:7、兩平行線間的距離公式:與:平行,則第四章:圓與方程1、圓的方程:標準方程:其中圓心為,半徑為.一般方程:.其中圓心為,半徑為.2、直線與圓的位置關(guān)系直線與圓的位置關(guān)系有三種:;. 弦長公式:3、兩圓位置關(guān)系:外離:;外切:;相交:;內(nèi)切:;內(nèi)含:.3、空間中兩點間距離公式:必修3數(shù)學知識點第一章:算法1、算法三種語言:自然語言、流程圖、程序語言;2、流程圖中的圖框:起止框、輸入輸出框、處理框、判斷框、流程線等規(guī)范表示方法;3、算法的三種基本結(jié)構(gòu): 順序結(jié)構(gòu)

16、、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu)順序結(jié)構(gòu)示意圖:語句n+1語句n(圖1)條件結(jié)構(gòu)示意圖:IF-THEN-ELSE格式:滿足條件?語句1語句2是否 (圖2)滿足條件?語句是否IF-THEN格式:(圖3)循環(huán)結(jié)構(gòu)示意圖:當型(WHILE型)循環(huán)結(jié)構(gòu)示意圖:滿足條件?循環(huán)體是否(圖4)直到型(UNTIL型)循環(huán)結(jié)構(gòu)示意圖:滿足條件?循環(huán)體是否(圖5)4、基本算法語句:輸入語句的一般格式:INPUT“提示內(nèi)容”;變量輸出語句的一般格式:PRINT“提示內(nèi)容”;表達式賦值語句的一般格式:變量表達式 (“=”有時也用“”).條件語句的一般格式有兩種:IFTHENELSE語句的一般格式為:IF 條件 THEN語句1EL

17、SE語句2END IF(圖2)IFTHEN語句的一般格式為:IF 條件 THEN語句END IF(圖3)循環(huán)語句的一般格式是兩種: 當型循環(huán)(WHILE)語句的一般格式:WHILE 條件循環(huán)體WEND(圖4)直到型循環(huán)(UNTIL)語句的一般格式:DO循環(huán)體LOOP UNTIL 條件(圖5)算法案例:輾轉(zhuǎn)相除法結(jié)果是以相除余數(shù)為0而得到利用輾轉(zhuǎn)相除法求最大公約數(shù)的步驟如下:):用較大的數(shù)m除以較小的數(shù)n得到一個商和一個余數(shù);):若0,則n為m,n的最大公約數(shù);若0,則用除數(shù)n除以余數(shù)得到一個商和一個余數(shù);):若0,則為m,n的最大公約數(shù);若0,則用除數(shù)除以余數(shù)得到一個商和一個余數(shù);依次計算直至

18、0,此時所得到的即為所求的最大公約數(shù)。更相減損術(shù)結(jié)果是以減數(shù)與差相等而得到利用更相減損術(shù)求最大公約數(shù)的步驟如下:):任意給出兩個正數(shù);判斷它們是否都是偶數(shù)。若是,用2約簡;若不是,執(zhí)行第二步。):以較大的數(shù)減去較小的數(shù),接著把較小的數(shù)與所得的差比較,并以大數(shù)減小數(shù)。繼續(xù)這個操作,直到所得的數(shù)相等為止,則這個數(shù)(等數(shù))就是所求的最大公約數(shù)。進位制十進制數(shù)化為k進制數(shù)除k取余法k進制數(shù)化為十進制數(shù)第二章:統(tǒng)計1、抽樣方法:簡單隨機抽樣(總體個數(shù)較少)系統(tǒng)抽樣(總體個數(shù)較多)分層抽樣(總體中差異明顯)注意:在N個個體的總體中抽取出n個個體組成樣本,每個個體被抽到的機會(概率)均為。2、總體分布的估計

19、:一表二圖:頻率分布表數(shù)據(jù)詳實頻率分布直方圖分布直觀頻率分布折線圖便于觀察總體分布趨勢注:總體分布的密度曲線與橫軸圍成的面積為1。莖葉圖:莖葉圖適用于數(shù)據(jù)較少的情況,從中便于看出數(shù)據(jù)的分布,以及中位數(shù)、眾位數(shù)等。個位數(shù)為葉,十位數(shù)為莖,右側(cè)數(shù)據(jù)按照從小到大書寫,相同的數(shù)據(jù)重復寫。3、總體特征數(shù)的估計:平均數(shù):;取值為的頻率分別為,則其平均數(shù)為;注意:頻率分布表計算平均數(shù)要取組中值。方差與標準差:一組樣本數(shù)據(jù)方差:;標準差:注:方差與標準差越小,說明樣本數(shù)據(jù)越穩(wěn)定。平均數(shù)反映數(shù)據(jù)總體水平;方差與標準差反映數(shù)據(jù)的穩(wěn)定水平。線性回歸方程變量之間的兩類關(guān)系:函數(shù)關(guān)系與相關(guān)關(guān)系;制作散點圖,判斷線性相關(guān)

20、關(guān)系線性回歸方程:(最小二乘法)注意:線性回歸直線經(jīng)過定點。第三章:概率1、隨機事件及其概率:事件:試驗的每一種可能的結(jié)果,用大寫英文字母表示;必然事件、不可能事件、隨機事件的特點;隨機事件A的概率:.2、古典概型:基本事件:一次試驗中可能出現(xiàn)的每一個基本結(jié)果;古典概型的特點:所有的基本事件只有有限個;每個基本事件都是等可能發(fā)生。古典概型概率計算公式:一次試驗的等可能基本事件共有n個,事件A包含了其中的m個基本事件,則事件A發(fā)生的概率.3、幾何概型:幾何概型的特點:所有的基本事件是無限個;每個基本事件都是等可能發(fā)生。幾何概型概率計算公式:;其中測度根據(jù)題目確定,一般為線段、角度、面積、體積等。

21、4、互斥事件:不可能同時發(fā)生的兩個事件稱為互斥事件;如果事件任意兩個都是互斥事件,則稱事件彼此互斥。如果事件A,B互斥,那么事件A+B發(fā)生的概率,等于事件A,B發(fā)生的概率的和,即:如果事件彼此互斥,則有:對立事件:兩個互斥事件中必有一個要發(fā)生,則稱這兩個事件為對立事件。事件的對立事件記作對立事件一定是互斥事件,互斥事件未必是對立事件。必修4數(shù)學知識點第一章:三角函數(shù)§1.1.1、任意角1、 正角、負角、零角、象限角的概念.2、 與角終邊相同的角的集合: .§1.1.2、弧度制1、 把長度等于半徑長的弧所對的圓心角叫做1弧度的角.2、 .3、弧長公式:.4、扇形面積公式:.&

22、#167;1.2.1、任意角的三角函數(shù)1、 設(shè)是一個任意角,它的終邊與單位圓交于點,那么:2、 設(shè)點為角終邊上任意一點,那么:(設(shè)) ,3、 ,在四個象限的符號和三角函數(shù)線的畫法.正弦線:MP; 余弦線:OM; 正切線:AT5、 特殊角0°,30°,45°,60°,90°,180°,270等的三角函數(shù)值.0§1.2.2、同角三角函數(shù)的基本關(guān)系式1、 平方關(guān)系:.2、 商數(shù)關(guān)系:.3、 倒數(shù)關(guān)系:§1.3、三角函數(shù)的誘導公式(概括為“奇變偶不變,符號看象限”)1、 誘導公式一:(其中:)2、 誘導公式二: 3、誘導公

23、式三: 4、誘導公式四: 5、誘導公式五: 6、誘導公式六: §1.4.1、正弦、余弦函數(shù)的圖象和性質(zhì)1、記住正弦、余弦函數(shù)圖象:2、能夠?qū)φ請D象講出正弦、余弦函數(shù)的相關(guān)性質(zhì):定義域、值域、最大最小值、對稱軸、對稱中心、奇偶性、單調(diào)性、周期性.3、會用五點法作圖.在上的五個關(guān)鍵點為: §1.4.3、正切函數(shù)的圖象與性質(zhì)1、記住正切函數(shù)的圖象:2、記住余切函數(shù)的圖象:3、能夠?qū)φ請D象講出正切函數(shù)的相關(guān)性質(zhì):定義域、值域、對稱中心、奇偶性、單調(diào)性、周期性.周期函數(shù)定義:對于函數(shù),如果存在一個非零常數(shù)T,使得當取定義域內(nèi)的每一個值時,都有,那么函數(shù)就叫做周期函數(shù),非零常數(shù)T叫做這

24、個函數(shù)的周期.圖表歸納:正弦、余弦、正切函數(shù)的圖像及其性質(zhì)圖象定義域值域-1,1-1,1最值無周期性奇偶性奇偶奇單調(diào)性在上單調(diào)遞增在上單調(diào)遞減在上單調(diào)遞增在上單調(diào)遞減在上單調(diào)遞增對稱性對稱軸方程:對稱中心對稱軸方程:對稱中心無對稱軸對稱中心§1.5、函數(shù)的圖象1、對于函數(shù):有:振幅A,周期,初相,相位,頻率.2、能夠講出函數(shù)的圖象與的圖象之間的平移伸縮變換關(guān)系. 先平移后伸縮: 平移個單位 (左加右減) 橫坐標不變 縱坐標變?yōu)樵瓉淼腁倍 縱坐標不變 橫坐標變?yōu)樵瓉淼谋镀揭苽€單位 (上加下減) 先伸縮后平移: 橫坐標不變 縱坐標變?yōu)樵瓉淼腁倍 縱坐標不變 橫坐標變?yōu)樵瓉淼谋镀揭苽€單位

25、(左加右減)平移個單位 (上加下減)3、三角函數(shù)的周期,對稱軸和對稱中心函數(shù),xR及函數(shù),xR(A,為常數(shù),且A0)的周期;函數(shù),(A,為常數(shù),且A0)的周期.對于和來說,對稱中心與零點相聯(lián)系,對稱軸與最值點聯(lián)系.求函數(shù)圖像的對稱軸與對稱中心,只需令與解出即可.余弦函數(shù)可與正弦函數(shù)類比可得.4、由圖像確定三角函數(shù)的解析式利用圖像特征:,.要根據(jù)周期來求,要用圖像的關(guān)鍵點來求.§1.6、三角函數(shù)模型的簡單應用1、 要求熟悉課本例題.第三章、三角恒等變換§3.1.1、兩角差的余弦公式記住15°的三角函數(shù)值:§3.1.2、兩角和與差的正弦、余弦、正切公式1、2

26、、3、4、5、.6、.§3.1.3、二倍角的正弦、余弦、正切公式1、, 變形: .2、.變形如下: 升冪公式:降冪公式:3、.4、§3.2、簡單的三角恒等變換1、 注意正切化弦、平方降次.2、輔助角公式 (其中輔助角所在象限由點的象限決定, ).第二章:平面向量§2.1.1、向量的物理背景與概念1、 了解四種常見向量:力、位移、速度、加速度.2、 既有大小又有方向的量叫做向量.§2.1.2、向量的幾何表示1、 帶有方向的線段叫做有向線段,有向線段包含三個要素:起點、方向、長度.2、 向量的大小,也就是向量的長度(或稱模),記作;長度為零的向量叫做零向量;

27、長度等于1個單位的向量叫做單位向量.3、 方向相同或相反的非零向量叫做平行向量(或共線向量).規(guī)定:零向量與任意向量平行.§2.1.3、相等向量與共線向量1、 長度相等且方向相同的向量叫做相等向量.§2.2.1、向量加法運算及其幾何意義1、 三角形加法法則和平行四邊形加法法則.2、.§2.2.2、向量減法運算及其幾何意義1、 與長度相等方向相反的向量叫做的相反向量.2、 三角形減法法則和平行四邊形減法法則.§2.2.3、向量數(shù)乘運算及其幾何意義1、 規(guī)定:實數(shù)與向量的積是一個向量,這種運算叫做向量的數(shù)乘.記作:,它的長度和方向規(guī)定如下: ,當時, 的方向

28、與的方向相同;當時, 的方向與的方向相反.2、 平面向量共線定理:向量與 共線,當且僅當有唯一一個實數(shù),使.§2.3.1、平面向量基本定理1、 平面向量基本定理:如果是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)任一向量,有且只有一對實數(shù),使.§2.3.2、平面向量的正交分解及坐標表示1、 .§2.3.3、平面向量的坐標運算1、 設(shè),則: ,.2、 設(shè),則: .§2.3.4、平面向量共線的坐標表示1、設(shè),則線段AB中點坐標為,ABC的重心坐標為.§2.4.1、平面向量數(shù)量積的物理背景及其含義1、 .2、 在方向上的投影為:.3、 .4、 .5

29、、 .§2.4.2、平面向量數(shù)量積的坐標表示、模、夾角1、 設(shè),則:2、 設(shè),則:.3、 兩向量的夾角公式 4、點的平移公式 平移前的點為(原坐標),平移后的對應點為(新坐標),平移向量為, 則 函數(shù)的圖像按向量平移后的圖像的解析式為§2.5.1、平面幾何中的向量方法§2.5.2、向量在物理中的應用舉例知識鏈接:空間向量空間向量的許多知識可由平面向量的知識類比而得.下面對空間向量在立體幾何中證明,求值的應用進行總結(jié)歸納.1、直線的方向向量和平面的法向量直線的方向向量: 若A、B是直線上的任意兩點,則為直線的一個方向向量;與平行的任意非零向量也是直線的方向向量.平面

30、的法向量:若向量所在直線垂直于平面,則稱這個向量垂直于平面,記作,如果,那么向量叫做平面的法向量. 平面的法向量的求法(待定系數(shù)法): 建立適當?shù)淖鴺讼翟O(shè)平面的法向量為求出平面內(nèi)兩個不共線向量的坐標根據(jù)法向量定義建立方程組.解方程組,取其中一組解,即得平面的法向量. (如圖) 2、 用向量方法判定空間中的平行關(guān)系線線平行 設(shè)直線的方向向量分別是,則要證明,只需證明,即.即:兩直線平行或重合兩直線的方向向量共線。線面平行(法一)設(shè)直線的方向向量是,平面的法向量是,則要證明,只需證明,即.即:直線與平面平行直線的方向向量與該平面的法向量垂直且直線在平面外(法二)要證明一條直線和一個平面平行,也可以

31、在平面內(nèi)找一個向量與已知直線的方向向量是共線向量即可.面面平行若平面的法向量為,平面的法向量為,要證,只需證,即證.即:兩平面平行或重合兩平面的法向量共線。3、用向量方法判定空間的垂直關(guān)系線線垂直設(shè)直線的方向向量分別是,則要證明,只需證明,即.即:兩直線垂直兩直線的方向向量垂直。線面垂直(法一)設(shè)直線的方向向量是,平面的法向量是,則要證明,只需證明,即.(法二)設(shè)直線的方向向量是,平面內(nèi)的兩個相交向量分別為,若即:直線與平面垂直直線的方向向量與平面的法向量共線直線的方向向量與平面內(nèi)兩條不共線直線的方向向量都垂直。面面垂直 若平面的法向量為,平面的法向量為,要證,只需證,即證. 即:兩平面垂直兩

32、平面的法向量垂直。4、利用向量求空間角求異面直線所成的角已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則求直線和平面所成的角 定義:平面的一條斜線和它在平面上的射影所成的銳角叫做這條斜線和這個平面所成的角求法:設(shè)直線的方向向量為,平面的法向量為,直線與平面所成的角為,與的夾角為,則為的余角或的補角的余角.即有:求二面角定義:平面內(nèi)的一條直線把平面分為兩個部分,其中的每一部分叫做半平面;從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,每個半平面叫做二面角的面OABOABl二面角的平面角是指在二面角的棱上任取一點O,分別在兩個半平面內(nèi)作射線,則為二面角的

33、平面角.如圖:求法:設(shè)二面角的兩個半平面的法向量分別為,再設(shè)的夾角為,二面角的平面角為,則二面角為的夾角或其補角根據(jù)具體圖形確定是銳角或是鈍角:如果是銳角,則,即; 如果是鈍角,則, 即.4、 利用法向量求空間距離點Q到直線距離 若Q為直線外的一點,在直線上,為直線的方向向量,=,則點Q到直線距離為 點A到平面的距離若點P為平面外一點,點M為平面內(nèi)任一點,平面的法向量為,則P到平面的距離就等于在法向量方向上的投影的絕對值. 即 直線與平面之間的距離 當一條直線和一個平面平行時,直線上的各點到平面的距離相等。由此可知,直線到平面的距離可轉(zhuǎn)化為求直線上任一點到平面的距離,即轉(zhuǎn)化為點面距離。 即兩平

34、行平面之間的距離 利用兩平行平面間的距離處處相等,可將兩平行平面間的距離轉(zhuǎn)化為求點面距離。即異面直線間的距離 設(shè)向量與兩異面直線都垂直,則兩異面直線間的距離就是在向量方向上投影的絕對值。 即6、三垂線定理及其逆定理三垂線定理:在平面內(nèi)的一條直線,如果它和這個平面的一條斜線的射影垂直,那么它也和這條斜線垂直推理模式:概括為:垂直于射影就垂直于斜線.三垂線定理的逆定理:在平面內(nèi)的一條直線,如果和這個平面的一條斜線垂直,那么它也和這條斜線的射影垂直推理模式:概括為:垂直于斜線就垂直于射影.7、三余弦定理設(shè)AC是平面內(nèi)的任一條直線,AD是的一條斜線AB在內(nèi)的射影,且BDAD,垂足為D.設(shè)AB與 (AD

35、)所成的角為, AD與AC所成的角為, AB與AC所成的角為則.8、 面積射影定理已知平面內(nèi)一個多邊形的面積為,它在平面內(nèi)的射影圖形的面積為,平面與平面所成的二面角的大小為銳二面角,則 9、一個結(jié)論 長度為的線段在三條兩兩互相垂直的直線上的射影長分別為,夾角分別為,則有 .(立體幾何中長方體對角線長的公式是其特例).必修5數(shù)學知識點第一章:解三角形1、正弦定理:.(其中為外接圓的半徑)用途:已知三角形兩角和任一邊,求其它元素; 已知三角形兩邊和其中一邊的對角,求其它元素。2、余弦定理:用途:已知三角形兩邊及其夾角,求其它元素;已知三角形三邊,求其它元素。做題中兩個定理經(jīng)常結(jié)合使用.3、三角形面

36、積公式:4、三角形內(nèi)角和定理: 在ABC中,有.5、一個常用結(jié)論: 在中,若特別注意,在三角函數(shù)中,不成立。第二章:數(shù)列1、數(shù)列中與之間的關(guān)系:注意通項能否合并。2、等差數(shù)列:定義:如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),即=d ,(n2,nN),那么這個數(shù)列就叫做等差數(shù)列。等差中項:若三數(shù)成等差數(shù)列通項公式: 或 前項和公式:常用性質(zhì):若,則;下標為等差數(shù)列的項,仍組成等差數(shù)列;數(shù)列(為常數(shù))仍為等差數(shù)列;若、是等差數(shù)列,則、 (、是非零常數(shù))、,也成等差數(shù)列。單調(diào)性:的公差為,則:)為遞增數(shù)列;)為遞減數(shù)列;)為常數(shù)列;數(shù)列為等差數(shù)列(p,q是常數(shù))若等差數(shù)列的前項和

37、,則、 是等差數(shù)列。3、等比數(shù)列定義:如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù),那么這個數(shù)列就叫做等比數(shù)列。等比中項:若三數(shù)成等比數(shù)列(同號)。反之不一定成立。通項公式:前項和公式:常用性質(zhì)若,則;為等比數(shù)列,公比為(下標成等差數(shù)列,則對應的項成等比數(shù)列)數(shù)列(為不等于零的常數(shù))仍是公比為的等比數(shù)列;正項等比數(shù)列;則是公差為的等差數(shù)列;若是等比數(shù)列,則 是等比數(shù)列,公比依次是單調(diào)性:為遞增數(shù)列;為遞減數(shù)列;為常數(shù)列;為擺動數(shù)列;既是等差數(shù)列又是等比數(shù)列的數(shù)列是常數(shù)列。若等比數(shù)列的前項和,則、 是等比數(shù)列.4、非等差、等比數(shù)列通項公式的求法類型 觀察法:已知數(shù)列前若干項,求該

38、數(shù)列的通項時,一般對所給的項觀察分析,尋找規(guī)律,從而根據(jù)規(guī)律寫出此數(shù)列的一個通項。類型 公式法:若已知數(shù)列的前項和與的關(guān)系,求數(shù)列的通項可用公式 構(gòu)造兩式作差求解。用此公式時要注意結(jié)論有兩種可能,一種是“一分為二”,即分段式;另一種是“合二為一”,即和合為一個表達,(要先分和兩種情況分別進行運算,然后驗證能否統(tǒng)一)。類型 累加法:形如型的遞推數(shù)列(其中是關(guān)于的函數(shù))可構(gòu)造: 將上述個式子兩邊分別相加,可得:若是關(guān)于的一次函數(shù),累加后可轉(zhuǎn)化為等差數(shù)列求和; 若是關(guān)于的指數(shù)函數(shù),累加后可轉(zhuǎn)化為等比數(shù)列求和;若是關(guān)于的二次函數(shù),累加后可分組求和; 若是關(guān)于的分式函數(shù),累加后可裂項求和. 類型 累乘法

39、:形如型的遞推數(shù)列(其中是關(guān)于的函數(shù))可構(gòu)造: 將上述個式子兩邊分別相乘,可得:有時若不能直接用,可變形成這種形式,然后用這種方法求解。類型 構(gòu)造數(shù)列法:形如(其中均為常數(shù)且)型的遞推式: (1)若時,數(shù)列為等差數(shù)列; (2)若時,數(shù)列為等比數(shù)列;(3)若且時,數(shù)列為線性遞推數(shù)列,其通項可通過待定系數(shù)法構(gòu)造等比數(shù)列來求.方法有如下兩種: 法一:設(shè),展開移項整理得,與題設(shè)比較系數(shù)(待定系數(shù)法)得,即構(gòu)成以為首項,以為公比的等比數(shù)列.再利用等比數(shù)列的通項公式求出的通項整理可得法二:由得兩式相減并整理得即構(gòu)成以為首項,以為公比的等比數(shù)列.求出的通項再轉(zhuǎn)化為類型(累加法)便可求出形如型的遞推式:當為一

40、次函數(shù)類型(即等差數(shù)列)時:法一:設(shè),通過待定系數(shù)法確定的值,轉(zhuǎn)化成以為首項,以為公比的等比數(shù)列,再利用等比數(shù)列的通項公式求出的通項整理可得法二:當?shù)墓顬闀r,由遞推式得:,兩式相減得:,令得:轉(zhuǎn)化為類型求出 ,再用類型(累加法)便可求出當為指數(shù)函數(shù)類型(即等比數(shù)列)時:法一:設(shè),通過待定系數(shù)法確定的值,轉(zhuǎn)化成以為首項,以為公比的等比數(shù)列,再利用等比數(shù)列的通項公式求出的通項整理可得法二:當?shù)墓葹闀r,由遞推式得:,兩邊同時乘以得,由兩式相減得,即,在轉(zhuǎn)化為類型便可求出法三:遞推公式為(其中p,q均為常數(shù))或(其中p,q, r均為常數(shù))時,要先在原遞推公式兩邊同時除以,得:,引入輔助數(shù)列(其中)

41、,得:再應用類型的方法解決。當為任意數(shù)列時,可用通法: 在兩邊同時除以可得到,令,則,在轉(zhuǎn)化為類型(累加法),求出之后得.類型 對數(shù)變換法:形如型的遞推式:在原遞推式兩邊取對數(shù)得,令得:,化歸為型,求出之后得(注意:底數(shù)不一定要取10,可根據(jù)題意選擇)。類型 倒數(shù)變換法:形如(為常數(shù)且)的遞推式:兩邊同除于,轉(zhuǎn)化為形式,化歸為型求出的表達式,再求;還有形如的遞推式,也可采用取倒數(shù)方法轉(zhuǎn)化成形式,化歸為型求出的表達式,再求.類型 形如型的遞推式:用待定系數(shù)法,化為特殊數(shù)列的形式求解。方法為:設(shè),比較系數(shù)得,可解得,于是是公比為的等比數(shù)列,這樣就化歸為型。總之,求數(shù)列通項公式可根據(jù)數(shù)列特點采用以上

42、不同方法求解,對不能轉(zhuǎn)化為以上方法求解的數(shù)列,可用歸納、猜想、證明方法求出數(shù)列通項公式5、非等差、等比數(shù)列前項和公式的求法錯位相減法若數(shù)列為等差數(shù)列,數(shù)列為等比數(shù)列,則數(shù)列的求和就要采用此法.將數(shù)列的每一項分別乘以的公比,然后在錯位相減,進而可得到數(shù)列的前項和.此法是在推導等比數(shù)列的前項和公式時所用的方法.裂項相消法一般地,當數(shù)列的通項 時,往往可將變成兩項的差,采用裂項相消法求和.可用待定系數(shù)法進行裂項:設(shè),通分整理后與原式相比較,根據(jù)對應項系數(shù)相等得,從而可得常見的拆項公式有: 分組法求和有一類數(shù)列,既不是等差數(shù)列,也不是等比數(shù)列,若將這類數(shù)列適當拆開,可分為幾個等差、等比或常見的數(shù)列,然

43、后分別求和,再將其合并即可.一般分兩步:找通向項公式由通項公式確定如何分組.倒序相加法如果一個數(shù)列,與首末兩項等距的兩項之和等于首末兩項之和,則可用把正著寫與倒著寫的兩個和式相加,就得到了一個常數(shù)列的和,這種求和方法稱為倒序相加法。特征:記住常見數(shù)列的前項和:第三章:不等式§3.1、不等關(guān)系與不等式1、不等式的基本性質(zhì)(對稱性)(傳遞性)(可加性)(同向可加性)(異向可減性)(可積性)(同向正數(shù)可乘性)(異向正數(shù)可除性)(平方法則)(開方法則)(倒數(shù)法則)2、幾個重要不等式,(當且僅當時取號). 變形公式:(基本不等式) ,(當且僅當時取到等號).變形公式: 用基本不等式求最值時(積

44、定和最小,和定積最大),要注意滿足三個條件“一正、二定、三相等”.(三個正數(shù)的算術(shù)幾何平均不等式)(當且僅當時取到等號).(當且僅當時取到等號).(當且僅當時取到等號).(當僅當a=b時取等號)(當僅當a=b時取等號)其中規(guī)律:小于1同加則變大,大于1同加則變小.絕對值三角不等式3、幾個著名不等式平均不等式:,(當且僅當時取號).(即調(diào)和平均幾何平均算術(shù)平均平方平均). 變形公式: 冪平均不等式:二維形式的三角不等式:二維形式的柯西不等式: 當且僅當時,等號成立.三維形式的柯西不等式:一般形式的柯西不等式:向量形式的柯西不等式:設(shè)是兩個向量,則當且僅當是零向量,或存在實數(shù),使時,等號成立.排序

45、不等式(排序原理):設(shè)為兩組實數(shù).是的任一排列,則(反序和亂序和順序和)當且僅當或時,反序和等于順序和.琴生不等式:(特例:凸函數(shù)、凹函數(shù))若定義在某區(qū)間上的函數(shù),對于定義域中任意兩點有則稱f(x)為凸(或凹)函數(shù).4、不等式證明的幾種常用方法 常用方法有:比較法(作差,作商法)、綜合法、分析法;其它方法有:換元法、反證法、放縮法、構(gòu)造法,函數(shù)單調(diào)性法,數(shù)學歸納法等.常見不等式的放縮方法:舍去或加上一些項,如將分子或分母放大(縮小),如 等.5、一元二次不等式的解法求一元二次不等式解集的步驟:一化:化二次項前的系數(shù)為正數(shù).二判:判斷對應方程的根.三求:求對應方程的根.四畫:畫出對應函數(shù)的圖象.

46、五解集:根據(jù)圖象寫出不等式的解集.規(guī)律:當二次項系數(shù)為正時,小于取中間,大于取兩邊.6、高次不等式的解法:穿根法.分解因式,把根標在數(shù)軸上,從右上方依次往下穿(奇穿偶切),結(jié)合原式不等號的方向,寫出不等式的解集.7、分式不等式的解法:先移項通分標準化,則 (時同理)規(guī)律:把分式不等式等價轉(zhuǎn)化為整式不等式求解.8、無理不等式的解法:轉(zhuǎn)化為有理不等式求解規(guī)律:把無理不等式等價轉(zhuǎn)化為有理不等式,訣竅在于從“小”的一邊分析求解.9、指數(shù)不等式的解法:當時,當時, 規(guī)律:根據(jù)指數(shù)函數(shù)的性質(zhì)轉(zhuǎn)化.10、對數(shù)不等式的解法當時, 當時, 規(guī)律:根據(jù)對數(shù)函數(shù)的性質(zhì)轉(zhuǎn)化.11、含絕對值不等式的解法:定義法:平方法

47、:同解變形法,其同解定理有:規(guī)律:關(guān)鍵是去掉絕對值的符號.12、含有兩個(或兩個以上)絕對值的不等式的解法:規(guī)律:找零點、劃區(qū)間、分段討論去絕對值、每段中取交集,最后取各段的并集.13、含參數(shù)的不等式的解法解形如且含參數(shù)的不等式時,要對參數(shù)進行分類討論,分類討論的標準有:討論與0的大小;討論與0的大小;討論兩根的大小.14、恒成立問題不等式的解集是全體實數(shù)(或恒成立)的條件是:當時 當時不等式的解集是全體實數(shù)(或恒成立)的條件是:當時當時恒成立恒成立恒成立恒成立15、線性規(guī)劃問題二元一次不等式所表示的平面區(qū)域的判斷: 法一:取點定域法:由于直線的同一側(cè)的所有點的坐標代入后所得的實數(shù)的符號相同.

48、所以,在實際判斷時,往往只需在直線某一側(cè)任取一特殊點(如原點),由的正負即可判斷出或表示直線哪一側(cè)的平面區(qū)域.即:直線定邊界,分清虛實;選點定區(qū)域,常選原點.法二:根據(jù)或,觀察的符號與不等式開口的符號,若同號,或表示直線上方的區(qū)域;若異號,則表示直線上方的區(qū)域.即:同號上方,異號下方.二元一次不等式組所表示的平面區(qū)域: 不等式組表示的平面區(qū)域是各個不等式所表示的平面區(qū)域的公共部分.利用線性規(guī)劃求目標函數(shù)為常數(shù))的最值: 法一:角點法:如果目標函數(shù) (即為公共區(qū)域中點的橫坐標和縱坐標)的最值存在,則這些最值都在該公共區(qū)域的邊界角點處取得,將這些角點的坐標代入目標函數(shù),得到一組對應值,最大的那個數(shù)

49、為目標函數(shù)的最大值,最小的那個數(shù)為目標函數(shù)的最小值法二:畫移定求:第一步,在平面直角坐標系中畫出可行域;第二步,作直線 ,平移直線(據(jù)可行域,將直線平行移動)確定最優(yōu)解;第三步,求出最優(yōu)解;第四步,將最優(yōu)解代入目標函數(shù)即可求出最大值或最小值 .第二步中最優(yōu)解的確定方法:利用的幾何意義:,為直線的縱截距.若則使目標函數(shù)所表示直線的縱截距最大的角點處,取得最大值,使直線的縱截距最小的角點處,取得最小值;若則使目標函數(shù)所表示直線的縱截距最大的角點處,取得最小值,使直線的縱截距最小的角點處,取得最大值.常見的目標函數(shù)的類型:“截距”型:“斜率”型:或“距離”型:或或在求該“三型”的目標函數(shù)的最值時,可結(jié)合線性規(guī)劃與代數(shù)式的幾何意義求解,從而使問題簡單化.選修數(shù)學知

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論