版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、排 列【教學(xué)目的】理解排列、排列數(shù)的概念,了解排列數(shù)公式的推導(dǎo);能用“樹型圖”寫出一個排列中所有的排列;能用排列數(shù)公式計算?!窘虒W(xué)重點】排列、排列數(shù)的概念?!窘虒W(xué)難點】排列數(shù)公式的推導(dǎo)一、問題情景問題1從甲、乙、丙3名同學(xué)中選取2名同學(xué)參加某一天的一項活動,其中一名同學(xué)參加上午的活動,一名同學(xué)參加下午的活動,有多少種不同的方法?分析:這個問題就是從甲、乙、丙3名同學(xué)中每次選取2名同學(xué),按照參加上午的活動在前,參加下午活動在后的順序排列,一共有多少種不同的排法的問題,共有6種不同的排法:甲乙 甲丙 乙甲 乙丙 丙甲 丙乙,其中被取的對象叫做元素。問題2從這四個字母中,每次取出3個按順序排成一列,
2、共有多少種不同的排法?分析:解決這個問題分三個步驟:第一步先確定左邊的字母,在4個字母中任取1個,有4種方法;第二步確定中間的字母,從余下的3個字母中取,有3種方法;第三步確定右邊的字母,從余下的2個字母中取,有2種方法由分步計數(shù)原理共有:4×3×2=24種不同的方法,用樹型圖排出,并寫出所有的排列由此可寫出所有的排法二、數(shù)學(xué)構(gòu)建1排列的概念:從個不同元素中,任?。ǎ﹤€元素(這里的被取元素各不相同)按照一定的順序排成一列,叫做從個不同元素中取出個元素的一個排列。說明:(1)排列的定義包括兩個方面:取出元素,按一定的順序排列; (2)兩個排列相同的條件:元素完全相同,元素的排
3、列順序也相同2排列數(shù)的定義:從個不同元素中,任?。ǎ﹤€元素的所有排列的個數(shù)叫做從個元素中取出元素的排列數(shù),用符號表示注意區(qū)別排列和排列數(shù)的不同:“一個排列”是指:從個不同元素中,任取個元素按照一定的順序排成一列,不是數(shù);“排列數(shù)”是指從個不同元素中,任?。ǎ﹤€元素的所有排列的個數(shù),是一個數(shù)所以符號只表示排列數(shù),而不表示具體的排列。3排列數(shù)公式及其推導(dǎo):由的意義:假定有排好順序的2個空位,從個元素中任取2個元素去填空,一個空位填一個元素,每一種填法就得到一個排列,反過來,任一個排列總可以由這樣的一種填法得到,因此,所有不同的填法的種數(shù)就是排列數(shù)由分步計數(shù)原理完成上述填空共有種填法,=由此,求可以
4、按依次填3個空位來考慮,=,求以按依次填個空位來考慮,得排列數(shù)公式如下:()說明:(1)公式特征:第一個因數(shù)是,后面每一個因數(shù)比它前面一個少1,最后一個因數(shù)是,共有個因數(shù);(2)全排列:當(dāng)時即個不同元素全部取出的一個排列。全排列數(shù)公式如下:(叫做n的階乘) 4階乘的概念:個不同元素全部取出的一個排列,叫做個不同元素的一個全排列,這時;把正整數(shù)1到的連乘積,叫做的階乘表示: , 即規(guī)定5排列數(shù)的另一個計算公式: 即 =。三、知識運用【例1】計算:(1); (2); (3)解:(1) 3360 ;(2) 720 ;(3)360。【例2】(1)若,則 , (2)若則用排列數(shù)符號表示為 解:(1)17
5、,14 (2)若則 【例3】(1)從這五個數(shù)字中,任取2個數(shù)字組成分數(shù),不同值的分數(shù)共有多少個?(2)5人站成一排照相,共有多少種不同的站法?(3)某年全國足球甲級(A組)聯(lián)賽共有14隊參加,每隊都要與其余各隊在主客場分別比賽1次,共進行多少場比賽?解:(1);(2);(3)【例4】計算:; 解:原式=;原式【例5】解方程:3解:由排列數(shù)公式得:, ,即,解得 或,且,原方程的解為【例6】解不等式:解:原不等式即,也就是,化簡得:,解得或,又,且,所以,原不等式的解集為【例7】求證:(1);(2)證明:(1),原式成立(2)右邊 原式成立說明:(1)解含排列數(shù)的方程和不等式時要注意排列數(shù)中,且
6、這些限制條件,要注意含排列數(shù)的方程和不等式中未知數(shù)的取值范圍;(2)公式常用來求值,特別是均為已知時,公式=,常用來證明或化簡?!纠?】化簡:;。解:原式提示:由,得,原式。說明:【例9】(1)有5本不同的書,從中選3本送給3名同學(xué),每人各1本,共有多少種不同的送法?(2)有5種不同的書,要買3本送給3名同學(xué),每人各1本,共有多少種不同的送法?解:(1)從5本不同的書中選出3本分別送給3名同學(xué),對應(yīng)于從5個元素中任取3個元素的一個排列,因此不同送法的種數(shù)是:,所以,共有60種不同的送法(2)由于有5種不同的書,送給每個同學(xué)的1本書都有5種不同的選購方法,因此送給3名同學(xué),每人各1本書的不同方法
7、種數(shù)是:,所以,共有125種不同的送法說明:本題兩小題的區(qū)別在于:第(1)小題是從5本不同的書中選出3本分送給3位同學(xué),各人得到的書不同,屬于求排列數(shù)問題;而第(2)小題中,給每人的書均可以從5種不同的書中任選1種,各人得到那種書相互之間沒有聯(lián)系,要用分步計數(shù)原理進行計算【例10】某信號兵用紅、黃、藍3面旗從上到下掛在豎直的旗桿上表示信號,每次可以任意掛1面、2面或3面,并且不同的順序表示不同的信號,一共可以表示多少種不同的信號?解:分3類:第一類用1面旗表示的信號有種;第二類用2面旗表示的信號有種;第三類用3面旗表示的信號有種,由分類計數(shù)原理,所求的信號種數(shù)是:,答:一共可以表示15種不同的
8、信號例3將位司機、位售票員分配到四輛不同班次的公共汽車上,每一輛汽車分別有一位司機和一位售票員,共有多少種不同的分配方案?分析:解決這個問題可以分為兩步,第一步:把位司機分配到四輛不同班次的公共汽車上,即從個不同元素中取出個元素排成一列,有種方法;第二步:把位售票員分配到四輛不同班次的公共汽車上,也有種方法,利用分步計數(shù)原理即得分配方案的種數(shù)解:由分步計數(shù)原理,分配方案共有(種)答:共有576種不同的分配方案【例11】用0到9這10個數(shù)字,可以組成多少個沒有重復(fù)數(shù)字的三位數(shù)?解法1:用分步計數(shù)原理:所求的三位數(shù)的個數(shù)是:解法2:符合條件的三位數(shù)可以分成三類:每一位數(shù)字都不是0的三位數(shù)有個,個位
9、數(shù)字是0的三位數(shù)有個,十位數(shù)字是0的三位數(shù)有個,由分類計數(shù)原理,符合條件的三位數(shù)的個數(shù)是:解法3:從0到9這10個數(shù)字中任取3個數(shù)字的排列數(shù)為,其中以0為排頭的排列數(shù)為,因此符合條件的三位數(shù)的個數(shù)是-說明:解決排列應(yīng)用題,常用的思考方法有直接法和間接法直接法:通過對問題進行恰當(dāng)?shù)姆诸惡头植?,直接計算符合條件的排列數(shù)如解法1,2;間接法:對于有限制條件的排列應(yīng)用題,可先不考慮限制條件,把所有情況的種數(shù)求出來,然后再減去不符合限制條件的情況種數(shù)如解法3對于有限制條件的排列應(yīng)用題,要恰當(dāng)?shù)卮_定分類與分步的標(biāo)準(zhǔn),防止重復(fù)與遺漏【例12】(1)7位同學(xué)站成一排,共有多少種不同的排法?解:問題可以看作:7
10、個元素的全排列5040(2)7位同學(xué)站成兩排(前3后4),共有多少種不同的排法?解:根據(jù)分步計數(shù)原理:7×6×5×4×3×2×17!5040(3)7位同學(xué)站成一排,其中甲站在中間的位置,共有多少種不同的排法?解:問題可以看作:余下的6個元素的全排列=720(4)7位同學(xué)站成一排,甲、乙只能站在兩端的排法共有多少種?解:根據(jù)分步計數(shù)原理:第一步 甲、乙站在兩端有種;第二步 余下的5名同學(xué)進行全排列有種,所以,共有=240種排列方法(5)7位同學(xué)站成一排,甲、乙不能站在排頭和排尾的排法共有多少種?解法1(直接法):第一步從(除去甲、乙)其
11、余的5位同學(xué)中選2位同學(xué)站在排頭和排尾有種方法;第二步從余下的5位同學(xué)中選5位進行排列(全排列)有種方法,所以一共有2400種排列方法解法2:(排除法)若甲站在排頭有種方法;若乙站在排尾有種方法;若甲站在排頭且乙站在排尾則有種方法,所以,甲不能站在排頭,乙不能排在排尾的排法共有=2400種說明:對于“在”與“不在”的問題,常常使用“直接法”或“排除法”,對某些特殊元素可以優(yōu)先考慮【例13】從10個不同的文藝節(jié)目中選6個編成一個節(jié)目單,如果某女演員的獨唱節(jié)目一定不能排在第二個節(jié)目的位置上,則共有多少種不同的排法?解法一:(從特殊位置考慮);解法二:(從特殊元素考慮)若選:;若不選:,則共有種;解
12、法三:(間接法)【例14】 7位同學(xué)站成一排,(1)甲、乙兩同學(xué)必須相鄰的排法共有多少種?解:先將甲、乙兩位同學(xué)“捆綁”在一起看成一個元素與其余的5個元素(同學(xué))一起進行全排列有種方法;再將甲、乙兩個同學(xué)“松綁”進行排列有種方法所以這樣的排法一共有種(2)甲、乙和丙三個同學(xué)都相鄰的排法共有多少種?解:方法同上,一共有720種(3)甲、乙兩同學(xué)必須相鄰,而且丙不能站在排頭和排尾的排法有多少種?解法一:將甲、乙兩同學(xué)“捆綁”在一起看成一個元素,此時一共有6個元素,因為丙不能站在排頭和排尾,所以可以從其余的5個元素中選取2個元素放在排頭和排尾,有種方法;將剩下的4個元素進行全排列有種方法;最后將甲、
13、乙兩個同學(xué)“松綁”進行排列有種方法所以這樣的排法一共有960種方法解法二:將甲、乙兩同學(xué)“捆綁”在一起看成一個元素,此時一共有6個元素,若丙站在排頭或排尾有2種方法,所以,丙不能站在排頭和排尾的排法有種方法解法三:將甲、乙兩同學(xué)“捆綁”在一起看成一個元素,此時一共有6個元素,因為丙不能站在排頭和排尾,所以可以從其余的四個位置選擇共有種方法,再將其余的5個元素進行全排列共有種方法,最后將甲、乙兩同學(xué)“松綁”,所以,這樣的排法一共有960種方法(4)甲、乙、丙三個同學(xué)必須站在一起,另外四個人也必須站在一起解:將甲、乙、丙三個同學(xué)“捆綁”在一起看成一個元素,另外四個人“捆綁”在一起看成一個元素,時一
14、共有2個元素,一共有排法種數(shù):(種)說明:對于相鄰問題,常用“捆綁法”(先捆后松)【例15】位同學(xué)站成一排,(1)甲、乙兩同學(xué)不能相鄰的排法共有多少種?解法一:(排除法);解法二:(插空法)先將其余五個同學(xué)排好有種方法,此時他們留下六個位置(就稱為“空”吧),再將甲、乙同學(xué)分別插入這六個位置(空)有種方法,所以一共有種方法(2)甲、乙和丙三個同學(xué)都不能相鄰的排法共有多少種?解:先將其余四個同學(xué)排好有種方法,此時他們留下五個“空”,再將甲、乙和丙三個同學(xué)分別插入這五個“空”有種方法,所以一共有1440種說明:對于不相鄰問題,常用“插空法”(特殊元素后考慮)【例16】5男5女排成一排,按下列要求各
15、有多少種排法:(1)男女相間;(2)女生按指定順序排列。解:(1)先將男生排好,有種排法;再將5名女生插在男生之間的6個“空擋”(包括兩端)中,有種排法。故本題的排法有(種);(2)方法1:;方法2:設(shè)想有10個位置,先將男生排在其中的任意5個位置上,有種排法;余下的5個位置排女生,因為女生的位置已經(jīng)指定,所以她們只有一種排法。故本題的結(jié)論為(種)四、課堂練習(xí)(一) 1四支足球隊爭奪冠、亞軍,不同的結(jié)果有() 種 10種 12種 16種2信號兵用3種不同顏色的旗子各一面,每次打出3面,最多能打出不同的信號有( )3種 6種 1種 27種3且則用排列數(shù)符號表示為( ) 45人站成一排照相,甲不站
16、在排頭的排法有( ) 24種 72種 96種 120種5給出下列問題:有10個車站,共需要準(zhǔn)備多少種車票?有10個車站,共有多少中不同的票價?平面內(nèi)有10個點,共可作出多少條不同的有向線段?有10個同學(xué),假期約定每兩人通電話一次,共需通話多少次?從10個同學(xué)中選出2名分別參加數(shù)學(xué)和物理競賽,有多少中選派方法?以上問題中,屬于排列問題的是 (填寫問題的編號)6若 ,則以為坐標(biāo)的點共有 個7從參加乒乓球團體比賽的5名運動員中選出3名進行某場比賽,并排定他們的出場順序,有多少種不同的方法?8從4種蔬菜品種中選出3種,分別種植在不同土質(zhì)的3塊土地上進行試驗,有多少中不同的種植方法?9計算:(1) (2
17、)10分別寫出從這4個字母里每次取出兩個字母的所有排列;11寫出從這六個元素中每次取出3個元素且必須含有元素的所有排列答案:1. C 2. B 3. C 4. B 5. 6. 63 7. 60 8. 24 9. 348;64 10.共有個:ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, dc 11. 共有個,具體的排列略(二) 1若,則 ( ) 2與不等的是 ( ) 3若,則的值為 ( ) 4計算: ; 5若,則的解集是 6(1)已知,那么 ;(2)已知,那么= ;(3)已知,那么 ;(4)已知,那么 7一個火車站有8股岔道,停放4列不同的火車,有多少種
18、不同的停放方法(假定每股岔道只能停放1列火車)?8一部紀(jì)錄影片在4個單位輪映,每一單位放映1場,有多少種輪映次序?答案:1. B 2. B 3. A 4. 1,1 5. 6. (1) 6 (2) 181440 (3) 8 (4) 5 7. 1680 8. 24 (三)1將1,2,3,4填入標(biāo)號為1,2,3,4的四個方格里,沒格填一個數(shù)字,則每個方格的標(biāo)號與所填的數(shù)字均不相同的填法( )種. 6 9 11 232有5列火車停在某車站并排的五條軌道上,若快車A不能停在第三條軌道上,貨車B不能停在第一條軌道上,則五列火車的停車方法有( )種.78 72 120 96 3由0,3,5,7這五個數(shù)組成無
19、重復(fù)數(shù)字的三位數(shù),其中是5的倍數(shù)的共有多少個( )9 21 24 42 4從七個數(shù)中,每次選不重復(fù)的三個數(shù)作為直線方程的系數(shù),則傾斜角為鈍角的直線共有( )條. 14 30 70 60 5從4種蔬菜品種中選出3種,分別種在不同土質(zhì)的3塊土地上進行實驗,有 _種不同的種植方法 69位同學(xué)排成三排,每排3人,其中甲不站在前排,乙不站在后排,這樣的排法種數(shù)共有 種。7(1)由數(shù)字1,2,3,4,5可以組成多少個無重復(fù)數(shù)字的正整數(shù)? (2)由數(shù)字1,2,3,4,5可以組成多少個無重復(fù)數(shù)字,并且比13000大的正整數(shù)?8學(xué)校要安排一場文藝晚會的11個節(jié)目的出場順序,除第1個節(jié)目和最后1個節(jié)目已確定外,4
20、個音樂節(jié)目要求排在第2、5、7、10的位置, 3個舞蹈節(jié)目要求排在第3、6、9的位置,2個曲藝節(jié)目要求排在第4、8的位置,共有多少種不同的排法?9某產(chǎn)品的加工需要經(jīng)過5道工序,(1)如果其中某一工序不能放在最后加工,有多少種排列加工順序的方法?(2)如果其中某兩工序不能放在最前,也不能放在最后,有多少種排列加工順序的方法?10一天的課表有6節(jié)課,其中上午4節(jié),下午2節(jié),要排語文、數(shù)學(xué)、外語、微機、體育、地理六節(jié)課,要求上午不排體育,數(shù)學(xué)必須排在上午,微機必須排在下午,共有多少種不同的排法?11. 由數(shù)字0,1,2,3,4,(1)可組成多少個沒有重復(fù)數(shù)字且比20000大的自然數(shù)?(2)2不在千位
21、,且4不在十位的五位數(shù)有多少個? 答案:1. B 2. A 3. B 4. C 5. 24 6. 166320 7.325; 1148. 288 9.96; 36 10. 4811. (1),(2)() (四)1停車場上有一排七個停車位,現(xiàn)有四輛汽車需要停放,若要使三個空位連在一起,則停放方法數(shù)為( ) 2五種不同商品在貨架上排成一排,其中兩種必須連排,而兩種不能連排,則不同的排法共有( )12種 20種 24種 48種 36張同排連號的電影票,分給3名教師與3名學(xué)生,若要求師生相間而坐,則不同的分法有( ) 4某人射出8發(fā)子彈,命中4發(fā),若命中的4發(fā)中僅有3發(fā)是連在一起的,那么該人射出的8發(fā),按“命中”與“不命中”報告結(jié)果,不同的結(jié)果有( )720種 480種 24種 20種 5設(shè)且,則在直角坐標(biāo)系中滿足條件的點共有 個67人站一排,甲不站排頭,也不站排尾,不同的站法種數(shù)有 種;甲不站排頭,乙不站排尾,不同站法種數(shù)有 種7一部電影在相鄰5
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 網(wǎng)絡(luò)倫理與道德-第1篇-洞察分析
- 虛擬現(xiàn)實訓(xùn)練成本效益分析-洞察分析
- 無人零售技術(shù)發(fā)展研究-洞察分析
- 線纜絕緣老化檢測方法-洞察分析
- 虛假新聞識別與治理-洞察分析
- 《大數(shù)據(jù)存儲技術(shù)與應(yīng)用》 課件 項目一-任務(wù)二 走進大數(shù)據(jù)存儲技術(shù)
- 文化產(chǎn)品自動化生產(chǎn)線構(gòu)建-洞察分析
- 醫(yī)療器械合作的意向書(5篇)
- 《建筑節(jié)能的措施》課件
- 創(chuàng)意美術(shù)教育課程設(shè)計的多維探索
- 移植后淋巴細胞增殖性疾病
- 風(fēng)光儲儲能項目PCS艙、電池艙吊裝方案
- 《軍隊征集和招錄人員政治考核規(guī)定》
- 住宅小區(qū)視頻監(jiān)控清單及報價2020
- 作文互改互批互評探究課題研究方案
- 四川內(nèi)江城市文化介紹宣傳PPT
- 建筑垃圾再生利用方案PPT模板
- 中華遲氏通譜字輩排行
- 調(diào)試單位調(diào)試大綱
- 2輸變電工程施工質(zhì)量驗收統(tǒng)一表式(變電工程土建專業(yè))
- 提高床頭交接班執(zhí)行率
評論
0/150
提交評論