下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、數(shù)學(xué):2.3數(shù)學(xué)歸納法教案(新人教A版選修2-2)第一課時(shí) 2.3 數(shù)學(xué)歸納法(一)教學(xué)要求:了解數(shù)學(xué)歸納法的原理,并能以遞推思想作指導(dǎo),理解數(shù)學(xué)歸納法的操作步驟,能用數(shù)學(xué)歸納法證明一些簡(jiǎn)單的數(shù)學(xué)命題,并能嚴(yán)格按照數(shù)學(xué)歸納法證明問題的格式書寫.教學(xué)重點(diǎn):能用數(shù)學(xué)歸納法證明一些簡(jiǎn)單的數(shù)學(xué)命題.教學(xué)難點(diǎn):數(shù)學(xué)歸納法中遞推思想的理解.教學(xué)過程:一、復(fù)習(xí)準(zhǔn)備:1. 問題1: 在數(shù)列中,先算出a2,a3,a4的值,再推測(cè)通項(xiàng)an的公式. (過程:,由此得到:)2. 問題2:,當(dāng)nN時(shí),是否都為質(zhì)數(shù)?過程:=41,=43,=47,=53,=61,=71,=83,=97,=113,=131,=151,
2、60; =1 601但是=1 681=412是合數(shù)3. 問題3:多米諾骨牌游戲. 成功的兩個(gè)條件:(1)第一張牌被推倒;(2)骨牌的排列,保證前一張牌倒則后一張牌也必定倒.二、講授新課:1. 教學(xué)數(shù)學(xué)歸納法概念: 給出定義:歸納法:由一些特殊事例推出一般結(jié)論的推理方法. 特點(diǎn):由特殊一般.不完全歸納法:根據(jù)事物的部分(而不是全部)特例得出一般結(jié)論的推理方法叫不完全歸納法.完全歸納法:把研究對(duì)象一一都考查到了而推出結(jié)論的歸納法稱為完全歸納法. 討論:?jiǎn)栴}1中,如果n=k猜想成立,那么n=k+1是否成立?對(duì)所有的正整數(shù)n是否成立? 提出數(shù)學(xué)歸納法兩大步:(i)歸納奠基:證明當(dāng)n取第一個(gè)值n0時(shí)命題
3、成立;(ii)歸納遞推:假設(shè)n=k(kn0, kN*)時(shí)命題成立,證明當(dāng)n=k+1時(shí)命題也成立. 只要完成這兩個(gè)步驟,就可以斷定命題對(duì)從n0開始的所有正整數(shù)n都成立. 原因:在基礎(chǔ)和遞推關(guān)系都成立時(shí),可以遞推出對(duì)所有不小于n0的正整數(shù)n0+1,n0+2,命題都成立. 關(guān)鍵:從假設(shè)n=k成立,證得n=k+1成立. 2. 教學(xué)例題: 出示例1:.分析:第1步如何寫?n=k的假設(shè)如何寫? 待證的目標(biāo)式是什么?如何從假設(shè)出發(fā)?小結(jié):證n=k+1時(shí),需從假設(shè)出發(fā),對(duì)比目標(biāo),分析等式兩邊同增的項(xiàng),朝目標(biāo)進(jìn)行變形. 練習(xí):求證:. 出示例2:設(shè)a+ (nN*),求證:a<(n1).關(guān)鍵:a<(k
4、1)+(k+1)+<(k+1)+(k+)(k+2) 小結(jié):放縮法,對(duì)比目標(biāo)發(fā)現(xiàn)放縮途徑. 變式:求證a>n(n1) 3. 小結(jié):書寫時(shí)必須明確寫出兩個(gè)步驟與一個(gè)結(jié)論,注意“遞推基礎(chǔ)不可少,歸納假設(shè)要用到,結(jié)論寫明莫忘掉”;從n=k到n=k+1時(shí),變形方法有乘法公式、因式分解、添拆項(xiàng)、配方等.三、鞏固練習(xí): 1. 練習(xí):教材108 練習(xí)1、2題 2. 作業(yè):教材108 B組1、2、3題.第二課時(shí) 2.3 數(shù)學(xué)歸納法(二)教學(xué)要求:了解數(shù)學(xué)歸納法的原理,并能以遞推思想作指導(dǎo),理解數(shù)學(xué)歸納法的操作步驟,能用數(shù)學(xué)歸納法證明一些簡(jiǎn)單的數(shù)學(xué)命題,并能嚴(yán)格按照數(shù)學(xué)歸納法證明問題的格式書寫.教學(xué)重
5、點(diǎn):能用數(shù)學(xué)歸納法證明一些簡(jiǎn)單的數(shù)學(xué)命題.教學(xué)難點(diǎn):經(jīng)歷試值、猜想、歸納、證明的過程來解決問題.教學(xué)過程:一、復(fù)習(xí)準(zhǔn)備:1. 練習(xí):已知,猜想的表達(dá)式,并給出證明? 過程:試值, 猜想 用數(shù)學(xué)歸納法證明.2. 提問:數(shù)學(xué)歸納法的基本步驟?二、講授新課:1. 教學(xué)例題: 出示例1:已知數(shù)列,猜想的表達(dá)式,并證明. 分析:如何進(jìn)行猜想?(試值猜想) 學(xué)生練習(xí)用數(shù)學(xué)歸納法證明 討論:如何直接求此題的? (裂項(xiàng)相消法) 小結(jié):探索性問題的解決過程(試值猜想、歸納證明) 練習(xí):是否存在常數(shù)a、b、c使得等式對(duì)一切自然數(shù)n都成立,試證明你的結(jié)論. 解題要點(diǎn):試值n=1,2,3, 猜想a、b、c 數(shù)學(xué)歸納法
6、證明2. 練習(xí): 已知 ,考察;之后,歸納出對(duì)也成立的類似不等式,并證明你的結(jié)論. (89年全國理科高考題)是否存在常數(shù)a、b、c,使得等式 (答案:a=3,b=11,c=10)1對(duì)一切自然數(shù)n都成立?并證明你的結(jié)論3. 小結(jié):探索性問題的解決模式為“一試驗(yàn)二歸納三猜想四證明”.三、鞏固練習(xí):1. 平面內(nèi)有n個(gè)圓,任意兩個(gè)圓都相交于兩點(diǎn),任何三個(gè)圓都不相交于同一點(diǎn),求證這n個(gè)圓將平面分成f(n)=n2n+2個(gè)部分.2. 是否存在正整數(shù)m,使得f(n)=(2n+7)·3n+9對(duì)任意正整數(shù)n都能被m整除?若存在,求出最大的m值,并證明你的結(jié)論;若不存在,請(qǐng)說明理由. (答案:m=36)3. 試證明面值為3分和5分的郵票可支付任何的郵資. 證明:(1)當(dāng)時(shí),由可知命題成立;(2)假設(shè)時(shí),命題成立. 則當(dāng)時(shí),由(1)及歸納假設(shè),顯然時(shí)成立.根據(jù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 艾滋病預(yù)防知識(shí)調(diào)查報(bào)告
- 特應(yīng)性皮炎治療指南2024
- 膽道蛔蟲病護(hù)理查房
- 小班防疫安全消息
- 大班科學(xué)活動(dòng)找種子
- 青春期畢業(yè)晚會(huì)
- 別說我小教案及反思
- 化學(xué)反應(yīng)速率與限度說課稿
- 紅綠燈說課稿中班
- 汽車4S店元旦活動(dòng)
- 兒童缺鐵性貧血護(hù)理查房課件
- 危重患者護(hù)理查房制度
- 護(hù)理管理文書質(zhì)量督查表
- 《財(cái)政學(xué)》第八章 稅收
- 消化科常規(guī)用藥及注意事項(xiàng)
- 通常起病于兒童少年的行為和情緒障
- 電氣基礎(chǔ)知識(shí)考試題庫(完整版)
- 2023年校長競(jìng)聘面試答辯題
- 學(xué)校制定校外供餐管理制度
- 統(tǒng)編版四年級(jí)上冊(cè)語文-梅蘭芳蓄須相關(guān)資料
- 職業(yè)衛(wèi)生評(píng)價(jià)考試計(jì)算題匯總
評(píng)論
0/150
提交評(píng)論