![中考數(shù)學(xué)試題分類 直線與圓的位置關(guān)系_第1頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/22/fa202a32-d90e-4824-9cae-5d112db4445c/fa202a32-d90e-4824-9cae-5d112db4445c1.gif)
![中考數(shù)學(xué)試題分類 直線與圓的位置關(guān)系_第2頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/22/fa202a32-d90e-4824-9cae-5d112db4445c/fa202a32-d90e-4824-9cae-5d112db4445c2.gif)
![中考數(shù)學(xué)試題分類 直線與圓的位置關(guān)系_第3頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/22/fa202a32-d90e-4824-9cae-5d112db4445c/fa202a32-d90e-4824-9cae-5d112db4445c3.gif)
![中考數(shù)學(xué)試題分類 直線與圓的位置關(guān)系_第4頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/22/fa202a32-d90e-4824-9cae-5d112db4445c/fa202a32-d90e-4824-9cae-5d112db4445c4.gif)
![中考數(shù)學(xué)試題分類 直線與圓的位置關(guān)系_第5頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/22/fa202a32-d90e-4824-9cae-5d112db4445c/fa202a32-d90e-4824-9cae-5d112db4445c5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、第33章 直線與圓的位置關(guān)系一、選擇題1. (2011寧波市,11,3分)如圖,O1的半徑為1,正方形ABCD的邊長為6,點O2為正方形ABCD的中心,O1O2垂直AB與P點,O1O28若將O1繞點P按順時針方向旋轉(zhuǎn)360°,在旋轉(zhuǎn)過程中,O1與正方形ABCD的邊只有一個公共點的情況一共出現(xiàn)A 3次 B5次 C 6次 D 7次 【答案】B2. (2011浙江臺州,10,4分)如圖,O的半徑為2,點O到直線l的距離為3,點P是直線l上的一個動點,PB切O于點B,則PB的最小值是( )A. B. C. 3 D.2【答案】B3. (2011浙江溫州,10,4分)如圖,O是正方形ABCD的對
2、角線BD上一點,O邊AB,BC都相切,點E,F(xiàn)分別在邊AD,DC上現(xiàn)將DEF沿著EF對折,折痕EF與O相切,此時點D恰好落在圓心O處若DE2,則正方形ABCD的邊長是( ) A3B4CD【答案】C4. (2011浙江麗水,10,3分)如圖,在平面直角坐標(biāo)系中,過格點A,B,C作一圓弧,點B與下列格點的連線中,能夠與該圓弧相切的是( )A點(0,3) B點(2,3) C點(5,1) D點(6,1)【答案】C5. (2011浙江金華,10,3分)如圖,在平面直角坐標(biāo)系中,過格點A,B,C作一圓弧,點B與下列格點的連線中,能夠與該圓弧相切的是( )A點(0,3) B點(2,3) C點(5,1) D點
3、(6,1)【答案】C6. (2011山東日照,11,4分)已知ACBC于C,BC=a,CA=b,AB=c,下列選項中O的半徑為的是( )【答案】C7. (2011湖北鄂州,13,3分)如圖,AB為O的直徑,PD切O于點C,交AB的延長線于D,且CO=CD,則PCA=( )A30°B45°C60°D67.5°DCAOB 第13題圖【答案】D8. (2011 浙江湖州,9,3)如圖,已知AB是O的直徑,C是AB延長線上一點,BCOB,CE是O的切線,切點為D,過點A作AECE,垂足為E,則CD:DE的值是A B1 C2 D3 【答案】C9. (20
4、11臺灣全區(qū),33)如圖(十五),為圓O的直徑,在圓O上取異于A、B的一點C,并連接、若想在上取一點P,使得P與直線BC的距離等于長,判斷下列四個作法何者正確?A作的中垂線,交于P點 B作ACB的角平分線,交于P點C作ABC的角平分線,交于D點,過D作直線BC的并行線,交于P點D過A作圓O的切線,交直線BC于D點,作ADC的角平分線,交于P點【答案】10(2011甘肅蘭州,3,4分)如圖,AB是O的直徑,點D在AB的延長線上,DC切O于點C,若A=25°,則D等于A20°B30°C40°D50°ABDOC【答案】C11. (2011四川成都,1
5、0,3分)已知O的面積為,若點0到直線的距離為,則直線與O的位置關(guān)系是C (A)相交 (B)相切 (C)相離 (D)無法確定【答案】C12. (2011重慶綦江,7,4分) 如圖,PA、PB是O的切線,切點是A、B,已知P60°,OA3,那么AOB所對弧的長度為( ) A6 B5 C3 D2【答案】:D13. (2011湖北黃岡,13,3分)如圖,AB為O的直徑,PD切O于點C,交AB的延長線于D,且CO=CD,則PCA=( )A30°B45°C60°D67.5°CDAOPB 第13題圖【答案】D14. (2011山東東營,12,3分
6、)如圖,直線與x軸、y分別相交與A、B兩點,圓心P的坐標(biāo)為(1,0),圓P與y軸相切與點O。若將圓P沿x軸向左移動,當(dāng)圓P與該直線相交時,橫坐標(biāo)為整數(shù)的點P的個數(shù)是( )A2 B3 C4 D5【答案】B15. (2011浙江杭州,5,3)在平面直角坐標(biāo)系xOy中,以點(-3,4)為圓心,4為半徑的圓( )A與x軸相交,與y軸相切 B與x軸相離,與y軸相交C與x軸相切,與y軸相交 D與x軸相切,與y軸相離【答案】C16. (2011山東棗莊,7,3分)如圖,是的切線,切點為A,PA=2,APO=30°,則的半徑為( )OPAA.1 B. C.2 D.4【答案】C二、填空題1. (201
7、1廣東東莞,9,4分)如圖,AB與O相切于點B,AO的延長線交O于點,連結(jié)BC.若A40°,則C °【答案】2. (2011四川南充市,13,3分)如圖,PA,PB是O是切線,A,B為切點, AC是O的直徑,若BAC=25°,則P= _度.【答案】503. (2011浙江衢州,16,4分)木工師傅可以用角尺測量并計算出圓的半徑.用角尺的較短邊緊靠,并使較長邊與相切于點.假設(shè)角尺的較長邊足夠長,角尺的頂點,較短邊.若讀得長為,則用含的代數(shù)式表示為 . (第16題)【答案】當(dāng)時,;當(dāng).4. (2011浙江紹興,16,5分) 如圖,相距2cm的兩個點在在線上,它們分別以
8、2 cm/s和1 cm/s的速度在上同時向右平移,當(dāng)點分別平移到點的位置時,半徑為1 cm的與半徑為的相切,則點平移到點的所用時間為 s. 第16題圖 【答案】5. (2011江蘇蘇州,16,3分)如圖,已知AB是O的一條直徑,延長AB至C點,使得AC=3BC,CD與O相切,切點為D.若CD=,則線段BC的長度等于_.【答案】16. (2011江蘇宿遷,17,3分)如圖,從O外一點A引圓的切線AB,切點為B,連接AO并延長交圓于點C,連接BC若A26°,則ACB的度數(shù)為 【答案】327. (2011山東濟寧,13,3分)如圖,在RtABC中,C=90°,A=60°
9、,BC=4cm,以點C為圓心,以3cm長為半徑作圓,則C與AB的位置關(guān)系是 第13題【答案】相交8. (2011廣東汕頭,9,4分)如圖,AB與O相切于點B,AO的延長線交O于點,連結(jié)BC.若A40°,則C °【答案】9. (2011山東威海,17,3分)如圖,將一個量角器與一張等腰直角三角形(ABC)紙片放置成軸對稱圖形,ACB=90°,CDAB,垂足為D,半圓(量角器)的圓心與點D重合,沒得CE5cm,將量角器沿DC方向平移2cm,半圓(量角器)恰與ABC的邊AC、BC相切,如圖,則AB的長為 cm.(精確到0.1cm) 圖 (第17題) 圖【答案】 24.5
10、10(2011四川宜賓,11,3分)如圖,PA、PB是O的切線,A、B為切點,AC是O的直徑,P=40°,則BAC=_(第11題圖)【答案】20°11. (2010湖北孝感,18,3分)如圖,直徑分別為CD、CE的兩個半圓相切于點C,大半圓M的弦AB與小半圓N相切于點F,且ABCD,AB=4,設(shè)、的長分別為x、y,線段ED的長為z,則z(x+y)= .【答案】812. (2011廣東省,9,4分)如圖,AB與O相切于點B,AO的延長線交O于點,連結(jié)BC.若A40°,則C °【答案】三、解答題1. (2011浙江義烏,21,8分)如圖,已知O的直徑AB與弦
11、CD互相垂直,垂足為點E. O的切線BF與弦AD的FMADOECOCB延長線相交于點F,且AD=3,cosBCD= .(1)求證:CDBF;(2)求O的半徑;(3)求弦CD的長. 【答案】(1)BF是O的切線 ABBF ABCD CDBF (2)連結(jié)BD AB是直徑 ADB=90° BCD=BAD cosBCD= cosBAD= 又AD=3 AB=4 O的半徑為2FADEOCB (3)cosDAE= AD=3AE= ED= CD=2ED=2. (2011浙江省舟山,22,10分)如圖,ABC中,以BC為直徑的圓交AB于點D,ACD=ABC(1)求證:CA是圓的切線;(2)若點E是BC
12、上一點,已知BE=6,tanABC=,tanAEC=,求圓的直徑(第22題)【答案】(1)BC是直徑,BDC=90°,ABC+DCB=90°,ACD=ABC,ACD+DCB=90°,BCCA,CA是圓的切線(2)在RtAEC中,tanAEC=,,;在RtABC中,tanABC=,,;BC-EC=BE,BE=6,,解得AC=,BC=即圓的直徑為10.3. (2011安徽蕪湖,23,12分)如圖,已知直線交O于A、B兩點,AE是O的直徑,點C為O上一點,且AC平分PAE,過C作,垂足為D.(1) 求證:CD為O的切線;(2) 若DC+DA=6,O的直徑為10,求AB的
13、長度.【答案】(1)證明:連接OC, 1分因為點C在O上,OA=OC,所以 因為,所以,有.因為AC平分PAE,所以3分所以 4分又因為點C在O上,OC為O的半徑,所以CD為O的切線. 5分(2)解:過O作,垂足為F,所以,所以四邊形OCDF為矩形,所以 7分因為DC+DA=6,設(shè),則因為O的直徑為10,所以,所以.在中,由勾股定理知即化簡得,解得或x=9. 9分由,知,故. 10分從而AD=2, 11分因為,由垂徑定理知F為AB的中點,所以12分4. (2011山東濱州,22,8分)如圖,直線PM切O于點M,直線PO交O于A、B兩點,弦ACPM,連接OM、BC.求證:(1)ABCPOM;(2
14、)2OA2=OP·BC.(第22題圖)【答案】證明:(1)直線PM切O于點M,PMO=90°1分 弦AB是直徑,ACB=90°2分 ACB=PMO3分 ACPM, CAB=P 4分 ABCPOM5分(2) ABCPOM, 6分 又AB=2OA,OA=OM, 7分2OA2=OP·BC8分5. (2011山東菏澤,18,10分)如圖,BD為O的直徑,AB=AC,AD交BC于點E,AE=2,ED=4,(1)求證:ABEADB;(2)求AB的長;(3)延長DB到F,使得BF=BO,連接FA,試判斷直線FA與O的位置關(guān)系,并說明理由 解:(1)證明:AB=AC,A
15、BC=C,C=D,ABC=D,又BAE=EAB,ABEADB, (2) ABEADB,AB2=AD·AE=(AEED)·AE=(24)×2=12AB= (3) 直線FA與O相切,理由如下:連接OA,BD為O的直徑,BAD=90°,BF=BO=,AB=,BF=BO=AB,可證OAF=90°,直線FA與O相切6. (2011山東日照,21,9分)如圖,AB是O的直徑,AC是弦,CD是O的切線,C為切點,ADCD于點D求證:(1)AOC=2ACD;(2)AC2AB·AD【答案】證明:(1)CD是O的切線,OCD=90°, 即ACD
16、+ACO=90° OC=OA,ACO=CAO,AOC=180°-2ACO,即AOC+ACO=90°. 由,得:ACD-AOC=0,即AOC=2ACD;(2)如圖,連接BCAB是直徑,ACB=90°在RtACD與RtACD中,AOC=2B,B=ACD,ACDABC,即AC2=AB·AD 7. (2011浙江溫州,20,8分)如圖,AB是O的直徑,弦CDAB于點E,過點B作O的切線,交AC的延長線于點F已知OA3,AE2,(1)求CD的長;(2)求BF的長【答案】解:(1)連結(jié)OC,在RtOCE中,CDAB,(2) BF是O 的切線,F(xiàn)BAB,CE
17、FB,ACEAFB,8. (2011浙江省嘉興,22,12分)如圖,ABC中,以BC為直徑的圓交AB于點D,ACD=ABC(1)求證:CA是圓的切線;(2)若點E是BC上一點,已知BE=6,tanABC=,tanAEC=,求圓的直徑(第22題)【答案】(1)BC是直徑,BDC=90°,ABC+DCB=90°,ACD=ABC,ACD+DCB=90°,BCCA,CA是圓的切線(2)在RtAEC中,tanAEC=,,;在RtABC中,tanABC=,,;BC-EC=BE,BE=6,,解得AC=,BC=即圓的直徑為10.9. (2011廣東株洲,22,8分)如圖,AB為O
18、的直徑,BC為O的切線,AC交O于點E,D 為AC上一點,AOD=C(1)求證:ODAC;(2)若AE=8,求OD的長【答案】(1)證明:BC是O的切線,AB為O的直徑ABC=90°,A+C=90°,又AOD=C, AOD+A=90°,ADO=90°,ODAC. (2)解:ODAE,O為圓心,D為AE中點 , ,又 , OD=3.10(2011山東濟寧,20,7分)如圖,AB是O的直徑,AM和BN是它的兩條切線,DE切O于點E,交AM于點D,交BN于點C,F(xiàn)是CD的中點,連接OF,(1)求證:ODBE;(2)猜想:OF與CD有何數(shù)量關(guān)系?并說明理由第20
19、題【答案】(1)證明:連接OE, AM、DE是O的切線,OA、OE是O的半徑,ADO=EDO,DAO=DEO=90°, AOD=EOD=AOE, ABE=AOE,AOD=ABE,ODBE (2)OF=CD,理由:連接OC,BC、CE是O的切線,OCB=OCE AMBN, ADO+EDO+OCB+OCE=180° 由(1)得ADO=EDO, 2EDO+2OCE=180°,即EDO+OCE=90°在RtDOC中,F(xiàn)是DC的中點,OF=CD 第20題11. (2011山東聊城,23,8分)如圖,AB是半圓的直徑,點O是圓心,點C是OA的中點,CDOA交半圓于點
20、D,點E是的中點,連接OD、AE,過點D作DPAE交BA的延長線于點P,(1)求AOD的度數(shù);(2)求證:PD是半圓O的切線;【答案】(1)點C是OA的中點,OCOAOD,CDOA,OCD90°,在RtOCD中,cosCOD,COD60°,即AOD60°,(2)證明:連接OC,點E是BD弧的中點,DE弧BE弧,BOEDOEDOB (180°COD)60°,OAOE,EAOAEO,又EAOAEOEOB60°,EAO30°,PDAE,PEAO30°,由(1)知AOD60°,PDO180°(PPOD)
21、180°(30°60°)90°,PD是圓O的切線12. (2011山東濰坊,23,11分)如圖,AB是半圓O的直徑,AB=2.射線AM、BN為半圓的切線.在AM上取一點D,連接BD交半圓于點C,連接AC.過O點作BC的垂線OE,垂足為點E,與BN相交于點F.過D點做半圓的切線DP,切點為P,與BN相交于點Q.(1)求證:ABCOFB;(2)當(dāng)ABD與BFO的面積相等時,求BQ的長;(3)求證:當(dāng)D在AM上移動時(A點除外),點Q始終是線段BF的中點.【解】(1)證明:AB為直徑,ACB=90°,即ACBC.又OEBC,OE/AC,BAC=FOB
22、.BN是半圓的切線,故BCA=OBF=90°.ACBOBF.(2)由ACBOBF,得OFB=DBA,DAB=OBF=90°,ABDBFO,當(dāng)ABD與BFO的面積相等時,ABDBFO.AD=BO=AB =1.DAAB,DA為O的切線.連接OP,DP是半圓O的切線,DA=DP=1,DA=AO=OP=DP=1,四邊形ADPO為正方形.DP/AB,四邊形DABQ為矩形.BQ=AD=1.(3)由(2)知,ABDBFO,.DPQ是半圓O的切線,AD=DP,QB=QP.過點Q作AM的垂線QK,垂足為K,在RtDQK中,BF=2BQ,Q為BF的中點.13. (2011四川廣安,29,10分
23、)如圖8所示P是O外一點PA是O的切線A是切點B是O上一點且PA=PB,連接AO、BO、AB,并延長BO與切線PA相交于點Q (1)求證:PB是O的切線; (2)求證: AQPQ= OQBQ; (3)設(shè)AOQ=若cos=OQ= 15求AB的長_Q_P_O_B_A圖8【答案】(1)證明:如圖,連結(jié)OP PA=PB,AO=BO,PO=PO APOBPO PBO=PAO=90° PB是O的切線 (2)證明:OAQ=PBQ=90° QPBQOA 即AQPQ= OQBQ (3)解:cos= AO=12 QPBQOA BPQ=AOQ= tanBPQ= PB=36 PO=12 ABPO=
24、 OBBP AB=_Q_P_O_B_A圖814. (2011江蘇淮安,25,10分)如圖,AD是O的弦,AB經(jīng)過圓心O,交O于點C,DAB=B=30°.(1)直線BD是否與O相切?為什么?(2)連接CD,若CD=5,求AB的長.【答案】(1)答:直線BD與O相切.理由如下: 如圖,連接OD,ODA=DAB=B=30°,ODB=180°-ODA-DAB-B=180°-30°-30°-30°=90°,即ODBD,直線BD與O相切.(2)解:由(1)知,ODA=DAB=30°,DOB=ODA+DAB=60
25、76;,又OC=OD,DOB是等邊三角形,OA=OD=CD=5.又B=30°,ODB=30°,OB=2OD=10.AB=OA+OB=5+10=15.15. (2011江蘇南通,22,8分)(本小題滿分8分)如圖,AM為O的切線,A為切點,BDAM于點D,BD交O于C,OC平分AOB.求B的度數(shù).【答案】60°.16. (2011四川綿陽22,12)如圖,在梯形ABCD中,AB/CD,BAD=90°,以AD為直徑的半圓O與BC相切.(1)求證:OB丄OC;(2)若AD= 12, BCD=60°,O1與半O 外切,并與BC、CD 相切,求O1的面積
26、.【答案】(1)證明:連接OF,在梯形ABCD,在直角AOB 和直角AOB F中AOBAOB(HL)同理CODCOF,BOC=90°,即OBOC(2) 過點做O1G,O1H垂直DC,DA,DOB=60°,DCO=BCO=30°,設(shè)O1G=x,又AD=12,OD=6,DC=6,OC=12,CG=x, O1C =6-x,根據(jù)勾股定理可知O1G²+GC²=O1C²x²+3x²=(6-x)²(x-2)(x+6)=0,x=217. (2011四川樂山24,10分)如圖,D為O上一點,點C在直徑BA的延長線上,且CD
27、A=CBD.(1)求證:CD是O的切線;(2)過點B作O的切線交CD的延長線于點E,若BC=6,tanCDA=,求BE的長【答案】證明:連接ODOA=ODADO=OADAB為O的直徑,ADO+BDO=90°在RtABD中,ABD+BAD=90°CDA=CBDCDA+ADO=90°ODCE即CE為O的切線18. (2011四川涼山州,27,8分)如圖,已知,以為直徑,為圓心的半圓交于點,點為的中點,連接交于點,為的角平分線,且,垂足為點。(1) 求證:是半圓的切線;(2) 若,求的長。BDAOAHACAEAMAFAA27題圖【答案】證明:連接, 是直徑 有于 是的角
28、平分線 又 為的中點 于 即 又是直徑 是半圓的切線 ···4分(2),。由(1)知,。在中,于,平分,。由,得。,。19. (2011江蘇無錫,27,10分)(本題滿分10分)如圖,已知O(0,0)、A(4,0)、B(4,3)。動點P從O點出發(fā),以每秒3個單位的速度,沿OAB的邊OA、AB、BO作勻速運動;動直線l從AB位置出發(fā),以每秒1個單位的速度向x軸負方向作勻速平移運動。若它們同時出發(fā),運動的時間為t秒,當(dāng)點P運動到O時,它們都停止運動。 (1)當(dāng)P在線段OA上運動時,求直線l與以點P為圓心、1為半徑的圓相交時t的取值范圍; (2)當(dāng)P在線段AB上運動時,
29、設(shè)直線l分別與OA、OB交于C、D,試問:四邊形CPBD是否可能為菱形?若能,求出此時t的值;若不能,請說明理由,并說明如何改變直線l的出發(fā)時間,使得四邊形CPBD會是菱形。yOxAB【答案】解:(1)當(dāng)點P在線段OA上時,P(3t,0),(1分)P與x軸的兩交點坐標(biāo)分別為(3t 1,0)、(3t + 1,0),直線l為x = 4 t,若直線l與P相交,則(3分)解得: < t < (5分)(2)點P與直線l運動t秒時,AP = 3t 4,AC = t若要四邊形CPBD為菱形,則CP / OB,PCA = BOA,RtAPC RtABO,解得t = ,(6分)此時AP = ,AC
30、= ,PC = ,而PB = 7 3t = PC,故四邊形CPBD不可能時菱形(7分)(上述方法不唯一,只要推出矛盾即可)現(xiàn)改變直線l的出發(fā)時間,設(shè)直線l比點P晚出發(fā)a秒,若四邊形CPBD為菱形,則CP / OB,APC ABO,即:,解得只要直線l比點P晚出發(fā)秒,則當(dāng)點P運動秒時,四邊形CPBD就是菱形(10分)20(2011湖北武漢市,22,8分)(本題滿分8分)如圖,PA為O的切線,A為切點過A作OP的垂線AB,垂足為點C,交O于點B延長BO與O交于點D,與PA的延長線交于點E(1)求證:PB為O的切線;(2)若tanABE=,求sinE的值 【答案】(本題8分)(1)證明:
31、連接OAPA為O的切線, PAO=90° OAOB,OPAB于C BCCA,PBPA PBOPAO PBOPAO90° PB為O的切線(2)解法1:連接AD,BD是直徑,BAD90°由(1)知BCO90° ADOP
32、 ADEPOE EA/EPAD/OP 由ADOC得AD2OC tanABE=1/2 OC/BC=1/2,設(shè)OCt,則BC2t,AD=2t由PBCBOC,得PC2BC4t,OP5t EA/EP=AD/OP=2/5,可設(shè)EA2m,EP=5m,則PA=3m PA=PBPB=3m sinE=PB/EP=3/5(2)解法2:連接AD,則BAD90°由(1)知BCO90°由ADOC,
33、AD2OC tanABE=1/2,OC/BC=1/2,設(shè)OCt,BC2t,AB=4t由PBCBOC,得PC2BC4t,PAPB2t 過A作AFPB于F,則AF·PB=AB·PC AF=t 進而由勾股定理得PFt sinE=sinFAP=PF/PA=3/521. (2011湖南衡陽,24,8分)如圖,ABC內(nèi)接于O,CA=CB,CDAB且與OA的延長線交與點D(1)判斷CD與O的位置關(guān)系并說明理由;(2)若ACB=120°,OA=2,求CD的長【解】 (1) CD與O的位置關(guān)
34、系是相切,理由如下:作直徑CE,連結(jié)AECE是直徑, EAC90°,EACE=90°,CA=CB,BCAB,ABCD,ACDCAB,BE,ACDE,ACEACD=90°,即DCO=90°,OCD C,CD與O相切(2)CDAB,OCD C,OCA B,又ACB=120°,OCAOCB=60°,OA=OC,OAC是等邊三角形,DOA=60°, 在RtDCO中, =,DC=OC=OA=222. (2011湖南永州,23,10分)如圖,AB是半圓O的直徑,點C是O上一點(不與A,B重合),連接AC,BC,過點O作ODAC交BC于點
35、D,在OD的延長線上取一點E,連接EB,使OEB=ABC求證:BE是O的切線;若OA=10,BC=16,求BE的長(第25題圖)【答案】證明:AB是半圓O的直徑 ACB=90°ODAC ODB=ACB=90° BOD+ABC=90°又OEB=ABC BOD+OEB=90° OBE=90°AB是半圓O的直徑 BE是O的切線在中,AB=2OA=20,BC=16, 23. (2011江蘇鹽城,25,10分)如圖,在ABC中,C= 90°,以AB上一點O為圓心,OA長為半徑的圓與BC相切于點D,分別交AC、AB于點E、F(1)若AC=6,AB
36、= 10,求O的半徑;(2)連接OE、ED、DF、EF若四邊形BDEF是平行四邊形,試判斷四邊形OFDE的形狀,并說明理由【答案】(1)連接OD. 設(shè)O的半徑為r. BC切O于點D,ODBC. C=90°,ODAC,OBDABC. = ,即 = . 解得r = ,O的半徑為. (2)四邊形OFDE是菱形. 四邊形BDEF是平行四邊形,DEF=B.DEF=DOB,B=DOB.ODB=90°,DOB+B=90°,DOB=60°. DEAB,ODE=60°.OD=OE,ODE是等邊三角形. OD=DE.OD=OF,DE=OF.四邊形OFDE是平行四邊
37、形. OE=OF,平行四邊形OFDE是菱形.24. (20011江蘇鎮(zhèn)江27,9分)在平面直角坐標(biāo)系xOy中,一次函數(shù)的圖象是直線與x軸、y軸分別相交于A、B兩點.直線過點C(a,0)且與垂直,其中a>0,點P、Q同時從A點出發(fā),其中點P沿射線AB運動,速度為每秒4個單位;點Q沿射線AO運動,速度為每秒5個單位.(1)寫出A點的坐標(biāo)和AB的長;(2)當(dāng)點P、Q運動了t秒時,以點Q為圓心,PQ為半徑的Q與直線、y軸都相切,求此時a的值.答案:(1)A(-4,0),AB=5.(2)由題意得:AP=4t,AQ=5t,又PAQ=QAB,APQAOB.APQ=AOB=90°。點P在上,Q在運動過程中保持與相切。當(dāng)Q在y軸右側(cè)與y軸相切時,設(shè)與Q相切于F,由APQAOB得 ,PQ=6,連接QF,則QF=PQ, QFCAPQAOB得.,QC=,a=OQ+QC=.當(dāng)Q在y軸左側(cè)與y軸相切時,設(shè)與Q相切于E, 由APQAOB得,PQ=.連接QE,則QE=PQ,由QECAPQAOB得,QC=,a=QC-OQ=.a的值為和。25. (2011廣東湛江27,12分)如圖,在中,點D是AC的中點,且,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 匯報在項目管理中的重要作用
- 現(xiàn)代市場營銷中的網(wǎng)絡(luò)直播工具選擇與應(yīng)用
- 現(xiàn)代商業(yè)項目中的綠色建筑策略
- Unit 3 Transportation Period 1(說課稿)-2024-2025學(xué)年人教新起點版英語四年級上冊
- 2024-2025學(xué)年高中地理上學(xué)期第十三周 中國地理分區(qū) 第一節(jié) 北方地區(qū)說課稿
- 2024年三年級品社下冊《這周我當(dāng)家》說課稿 遼師大版
- 5 數(shù)學(xué)廣角 - 鴿巢問題(說課稿)-2023-2024學(xué)年六年級下冊數(shù)學(xué)人教版
- 16 表里的生物(說課稿)-2023-2024學(xué)年統(tǒng)編版語文六年級下冊
- 2023九年級數(shù)學(xué)下冊 第24章 圓24.4 直線與圓的位置關(guān)系第2課時 切線的判定定理說課稿 (新版)滬科版
- 7《花 果實 種子》說課稿-2023-2024學(xué)年科學(xué)三年級下冊人教鄂教版
- 幼兒園費用報銷管理制度
- 【7歷期末】安徽省宣城市2023-2024學(xué)年七年級上學(xué)期期末考試歷史試題
- 春節(jié)后安全生產(chǎn)開工第一課
- 2025光伏組件清洗合同
- 電力電纜工程施工組織設(shè)計
- 2024年網(wǎng)格員考試題庫完美版
- 《建筑與市政工程防水規(guī)范》解讀
- 審計合同終止協(xié)議書(2篇)
- 2024年重慶市中考數(shù)學(xué)試題B卷含答案
- 腰椎間盤突出癥護理查房
- 醫(yī)生給病人免責(zé)協(xié)議書(2篇)
評論
0/150
提交評論