版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、2022蘇科版必修二數(shù)學知識點總結蘇科版必修二數(shù)學知識點總結圓的方程1、圓的定義:平面內(nèi)到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑.2、圓的方程(1)標準方程,圓心,半徑為r;(2)一般方程當時,方程表示圓,此時圓心為,半徑為當時,表示一個點;當時,方程不表示任何圖形.(3)求圓方程的方法:一般都采用待定系數(shù)法:先設后求.確定一個圓需要三個獨立條件,若利用圓的標準方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置.高中數(shù)學必修二知識點總結:直線與圓的位置關系:直線與圓的位置關系有相離,相切
2、,相交三種情況:(1)設直線,圓,圓心到l的距離為,則有;(2)過圓外一點的切線:k不存在,驗證是否成立k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r24、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.設圓,兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.當時兩圓外離,此時有公切線四條;當時兩圓外切,連心線過切點,有外公切線兩條,內(nèi)公切線一條;當時
3、兩圓相交,連心線垂直平分公共弦,有兩條外公切線;當時,兩圓內(nèi)切,連心線經(jīng)過切點,只有一條公切線;當時,兩圓內(nèi)含;當時,為同心圓.注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線4、空間點、直線、平面的位置關系公理1:如果一條直線的兩點在一個平面內(nèi),那么這條直線是所有的點都在這個平面內(nèi).應用:判斷直線是否在平面內(nèi)用符號語言表示公理1:公理2:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線符號:平面和相交,交線是a,記作=a.符號語言:公理2的作用:它是判定兩個平面相交的方法.它說明兩個平面的交線與兩個平面公共點之間的關系:交線必過公共點.它可以判斷點在
4、直線上,即證若干個點共線的重要依據(jù).公理3:經(jīng)過不在同一條直線上的三點,有且只有一個平面.推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面.公理3及其推論作用:它是空間內(nèi)確定平面的依據(jù)它是證明平面重合的依據(jù)公理4:平行于同一條直線的兩條直線互相平行空間直線與直線之間的位置關系異面直線定義:不同在任何一個平面內(nèi)的兩條直線異面直線性質(zhì):既不平行,又不相交.異面直線判定:過平面外一點與平面內(nèi)一點的直線與平面內(nèi)不過該店的直線是異面直線異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角.兩條異面直線所成角的范圍是(0°,90°,若兩條異面直線所
5、成的角是直角,我們就說這兩條異面直線互相垂直.求異面直線所成角步驟:A、利用定義構造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上.B、證明作出的角即為所求角C、利用三角形來求角(7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補.(8)空間直線與平面之間的位置關系直線在平面內(nèi)有無數(shù)個公共點.三種位置關系的符號表示:aa=Aa(9)平面與平面之間的位置關系:平行沒有公共點;相交有一條公共直線.=b5、空間中的平行問題(1)直線與平面平行的判定及其性質(zhì)線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行.線線平
6、行線面平行線面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行.線面平行線線平行(2)平面與平面平行的判定及其性質(zhì)兩個平面平行的判定定理(1)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行(線面平行面面平行),(2)如果在兩個平面內(nèi),各有兩組相交直線對應平行,那么這兩個平面平行.(線線平行面面平行),(3)垂直于同一條直線的兩個平面平行,兩個平面平行的性質(zhì)定理(1)如果兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行.(面面平行線面平行)(2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行.(面面平行線線平行)
7、7、空間中的垂直問題(1)線線、面面、線面垂直的定義兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直.線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直.平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直.(2)垂直關系的判定和性質(zhì)定理線面垂直判定定理和性質(zhì)定理判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面.性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行.面面垂直的判定定理和性質(zhì)定理判定定理:如果一個平面經(jīng)
8、過另一個平面的一條垂線,那么這兩個平面互相垂直.性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面.9、空間角問題(1)直線與直線所成的角兩平行直線所成的角:規(guī)定為.兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角.兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角.(2)直線和平面所成的角平面的平行線與平面所成的角:規(guī)定為.平面的垂線與平面所成的角:規(guī)定為.平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫
9、做這條直線和這個平面所成的角.求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”.在“作角”時依定義關鍵作射影,由射影定義知關鍵在于斜線上一點到面的垂線,在解題時,注意挖掘題設中兩個主要信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線.(3)二面角和二面角的平面角二面角的定義:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面.二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角.直二面角:平面角是直角的二
10、面角叫直二面角.兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角求二面角的方法定義法:在棱上選擇有關點,過這個點分別在兩個面內(nèi)作垂直于棱的射線得到平面角垂面法:已知二面角內(nèi)一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角數(shù)學的學習方法1、養(yǎng)成良好的學習數(shù)學習慣。 建立良好的學習數(shù)學習慣,會使自己學習感到有序而輕松。高中數(shù)學的良好習慣應是:多質(zhì)疑、勤思考、好動手、重歸納、注意應用。學生在學習數(shù)學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。良好的學習數(shù)學習慣包括課前自學、專
11、心上課、及時復習、獨立作業(yè)、解決疑難、系統(tǒng)小結和課外學習幾個方面。2、及時了解、掌握常用的數(shù)學思想和方法,學好高中數(shù)學,需要我們從數(shù)學思想與方法高度來掌握它。中學數(shù)學學習要重點掌握的的數(shù)學思想有以上幾個:集合與對應思想,分類討論思想,數(shù)形結合思想,運動思想,轉(zhuǎn)化思想,變換思想。3、逐步形成 “以我為主”的學習模式 數(shù)學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數(shù)學就要積極主動地參與學習過程,養(yǎng)成實事求是的科學態(tài)度,獨立思考、勇于探索的創(chuàng)新精神。4、記數(shù)學筆記,特別是對概念理解的不同側(cè)面和數(shù)學規(guī)律,教師在課堂中拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例
12、題,以及你還存在的未解決的問題,以便今后將其補上。高中數(shù)學知識點有哪些1、混淆命題的否定與否命題命題的“否定”與命題的“否命題”是兩個不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對“若p,則q”形式的命題而言,既要否定條件也要否定結論。2、忽視集合元素的三性致誤集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數(shù)的集合,實際上就隱含著對字母參數(shù)的一些要求。3、判斷函數(shù)奇偶性忽略定義域致誤判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個函數(shù)具備奇偶性的必要條件是這個函數(shù)的定義域關于原點對稱,如果不具備這個條件,函數(shù)一定是非奇非偶函數(shù)。4
13、、函數(shù)零點定理使用不當致誤如果函數(shù)y=f(x)在區(qū)間a,b上的圖像是一條連續(xù)的曲線,并且有f(a)f(b)0時,不能否定函數(shù)y=f(x)在(a,b)內(nèi)有零點。函數(shù)的零點有“變號零點”和“不變號零點”,對于“不變號零點”函數(shù)的零點定理是“無能為力”的,在解決函數(shù)的零點問題時要注意這個問題。5、函數(shù)的單調(diào)區(qū)間理解不準致誤在研究函數(shù)問題時要時時刻刻想到“函數(shù)的圖像”,學會從函數(shù)圖像上去分析問題、尋找解決問題的方法。對于函數(shù)的幾個不同的單調(diào)遞增(減)區(qū)間,切忌使用并集,只要指明這幾個區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。6、三角函數(shù)的單調(diào)性判斷致誤對于函數(shù)y=Asin(x+)的單調(diào)性,當>0時,
14、由于內(nèi)層函數(shù)u=x+是單調(diào)遞增的,所以該函數(shù)的單調(diào)性和y=sin x的單調(diào)性相同,故可完全按照函數(shù)y=sin x的單調(diào)區(qū)間解決;但當7、向量夾角范圍不清致誤解題時要全面考慮問題。數(shù)學試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時把這些因素考慮到,是解題成功的關鍵,如當a·b8、忽視零向量致誤零向量是向量中最特殊的向量,規(guī)定零向量的長度為0,其方向是任意的,零向量與任意向量都共線。它在向量中的位置正如實數(shù)中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會出錯,考生應給予足夠的重視。9、對數(shù)列的定義、性質(zhì)理解錯誤等差數(shù)列的前n項和在公差不為零時是關于n的常數(shù)項為零的二
15、次函數(shù);一般地,有結論“若數(shù)列an的前n項和Sn=an2+bn+c(a,b,cR),則數(shù)列an為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(mNx)是等差數(shù)列。10、an與Sn關系不清致誤在數(shù)列問題中,數(shù)列的通項an與其前n項和Sn之間存在下列關系:an=S1,n=1,Sn-Sn-1,n2。這個關系對任意數(shù)列都是成立的,但要注意的是這個關系式是分段的,在n=1和n2時這個關系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯的一個地方,在使用這個關系式時要牢牢記住其“分段”的特點。11、錯位相減求和項處理不當致誤錯位相減求和法的適用條件:數(shù)列是由一個等差數(shù)列和一
16、個等比數(shù)列對應項的乘積所組成的,求其前n項和。基本方法是設這個和式為Sn,在這個和式兩端同時乘以等比數(shù)列的公比得到另一個和式,這兩個和式錯一位相減,就把問題轉(zhuǎn)化為以求一個等比數(shù)列的前n項和或前n-1項和為主的求和問題.這里最容易出現(xiàn)問題的就是錯位相減后對剩余項的處理。12、不等式性質(zhì)應用不當致誤在使用不等式的基本性質(zhì)進行推理論證時一定要準確,特別是不等式兩端同時乘以或同時除以一個數(shù)式、兩個不等式相乘、一個不等式兩端同時n次方時,一定要注意使其能夠這樣做的條件,如果忽視了不等式性質(zhì)成立的前提條件就會出現(xiàn)錯誤。13、數(shù)列中的最值錯誤數(shù)列問題中其通項公式、前n項和公式都是關于正整數(shù)n的函數(shù),要善于從
17、函數(shù)的觀點認識和理解數(shù)列問題。數(shù)列的通項an與前n項和Sn的關系是高考的命題重點,解題時要注意把n=1和n2分開討論,再看能不能統(tǒng)一。在關于正整數(shù)n的二次函數(shù)中其取最值的點要根據(jù)正整數(shù)距離二次函數(shù)的對稱軸的遠近而定。14、不等式恒成立問題致誤解決不等式恒成立問題的常規(guī)求法是:借助相應函數(shù)的單調(diào)性求解,其中的主要方法有數(shù)形結合法、變量分離法、主元法。通過最值產(chǎn)生結論。應注意恒成立與存在性問題的區(qū)別,如對任意xa,b都有f(x)g(x)成立,即f(x)-g(x)0的恒成立問題,但對存在xa,b,使f(x)g(x)成立,則為存在性問題,即f(x)ming(x)max,應特別注意兩函數(shù)中的最大值與最小值的關系。15、忽視三視圖中的實、虛線致誤三視圖是根據(jù)正投影原理進行繪制,嚴格按照“長對正,高平齊,寬相等”的規(guī)則去畫,若相鄰兩物體的表面相交,表面的交線是它們的原分界線,且分界線和可視輪廓線都用實線畫出,不可見的輪廓線用虛線畫出,這一點很容易疏忽。16、面積體積計算轉(zhuǎn)化不靈活致誤面積、體積的計算既需要學生有扎實的基礎知識,又要用到一些重要的思想方法,是高考考查的重要題型.因此要熟練掌握以下幾種常用的思想方法。(1)還臺為錐的思想:這是處理臺體時常用的思想方法。(2)割補法:求不規(guī)則圖形面積或幾何體體積時常用。(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中小企業(yè)數(shù)字化轉(zhuǎn)型運營方案
- 長沙2024年09版小學3年級上冊英語第三單元真題試卷
- 教育信息化經(jīng)費管理制度
- 小學語文課程評價與反饋方案
- 綠色停車位建設方案
- 餐飲行業(yè)食品安全制度
- 信訪崗位干部培養(yǎng)機制的探索
- 學校消防安全宣傳教育活動方案3篇
- 商場疫情防控實施方案
- 教師求職信范文
- 太陽系與八大行星英語教學課件
- 未成年人圖書館文獻分類排架講座(修訂)概要課件
- 教科版五年級科學上冊(風的作用) 教學課件
- 鹽酸-危險化學品安全標簽
- 部編版道德與法治三年級上冊知識點
- SB/T 10843-2012金屬組合貨架
- GB/T 4337-2015金屬材料疲勞試驗旋轉(zhuǎn)彎曲方法
- GB/T 40120-2021農(nóng)業(yè)灌溉設備灌溉用熱塑性可折疊軟管技術規(guī)范和試驗方法
- 各專業(yè)試驗報告-nvh m301s1樣車測試報告
- 化工課件-S-Zorb裝置運行特點及故障處理
- 頭發(fā)及頭皮知識講述資料課件
評論
0/150
提交評論