版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、數(shù)字信號處理Digital Signal Processing 電子信息工程系韓建峰KeywordsSectionsSampling sinusoidsSampling theoremDiscrete-to-Continuous Conversion Summary LECTURE 1Reading assignments This lecture Chapter 4Section 4-1 KeywordsPart AContinuous-to-Discrete Conversion Sampling & ReconstructionAliasing & Folding LEC
2、TURE OBJECTIVES SAMPLING can cause ALIASING Spectrum for digital signals,x nNormalized Frequency22+=ss f f T ALIASING Review SignalsSampling Reconstruction Continuous-time SignalBut the key point is that any computer represent ation is discrete.So, do sampling!And, how?(cos(x t A t=+ Sample a contin
3、uous-time signal at equally spaced time instants.Take a “snapshot” every Ts.Speech, audio andso on. Or, compute the values of a discrete-time signal directly from a formula.2=-+53x n n n SAMPLING x(tSAMPLING PROCESSConvert x(t to numbers xn“n” is an integer; xn is a sequence ofvaluesThink of “n” as
4、the storage address inmemoryUNIFORM SAMPLING at t = nTsIDEAL: xn = x(nTs SAMPLING RATE, f s SAMPLING RATE (fsf=1/T ssNUMBER of SAMPLES PER SECOND T= 125 microsec f s= 8000 samples/secsUNITS ARE HERTZ: 8000 Hz UNIFORM SAMPLING at t = nT= n/f ssIDEAL: xn = x(nT=x(n/f ss Examples of continuous-time sig
5、nals exist in the “real-world” outside the computer.Simple mathematical formula.More general continuous-time signals can be represented as sum of sinusoids.So, we will use sinusoidal signal as the basis for our study of sampling. sf s T n A n x =+=cos(cos(cos(+=+=s s nT A nT x n x t A t x Change x(t
6、 into xn DERIV ATIONcos(+=n T A n x s DEFINE DIGITAL FREQUENCYDigital Frequency V ARIES from 0to 2, as f varies from 0 to the sampling frequencyUNITS are radians, not rad/secDIGITAL FREQUENCY is NORMALIZEDss f f T 2= Sample RateHow to select theT sSample Theorem A interesting phenomenonExercise 4.1I
7、s this the only possible answer?Hz 1000at sampled 2400cos(2=s f t t x 21000cos(2400cos(2.4cos(0.42cos(0.4nx n n n n n =+=(cos(400x t t =Aliasingcos(0.4x n n = Illustration of aliasingDifferent frequency, but same values at n=0,1,2,32.4is an alias of 0.4Exercise 4.2 AliasingHow does aliasing arise in
8、 a mathematical treat ment of discrete-time signal?The last example:12cos(0.4cos(2.4x n n x n n =2cos(0.42cos(0.4x n n n n =+=Periodic function with period 2Aliasing Derivation-1and we substitute: t n f sIf x (t =A cos(2(f + f s t +then: x n =A cos(2(f + f s n f s +or, x n =A cos(2f f s n +2 n + Ali
9、asing Derivation-22s sf T f = +2 2(22then: s s s s s f f f f f f f +=+ and we want: cos(x n A n =+If x (t =A cos(2(f + f s t +t n f s Folded Aliasx (t =A cos(2(-f + f s t -SAME DIGITAL SIGNAL cos(x n A n =+x n =A cos(2f T s n -2 n +x n =A cos(-2fT s n +(2 f s T s n - x n =x (nT s =A cos(2(-f + f s n
10、T s - Aliasing2s s f T f = +2 22s s f T f =-+ Folded Alias AlisingPrincipal Aliasing, 2, 2 integer l l l +-=General Formula Spectrum of a Discrete-Time SignalPLOT versus NORMALIZED FREQUENCY INCLUDE ALL SPECTRUM LINES ALIASESADD MULTIPLES of 2SUBTRACT MULTIPLES of 2FOLDED ALIASESALIASES of NEGATIVE
11、FREQS SPECTRUM (Aliasing Case12X *0.512X 1.512X 0.5 2.52.512X 12X *12X *1.580/(100(2cos(+=n A n x 80s f Hz =sf f 2= SPECTRUM (Folding Case2sf f =f s =125Hz 12X *0.412X 0.4 1.61.612X 12X *125/(100(2cos(+=n A n x DEMO: Strobe Movies 12What is the meaning of this DEMO?Can you give us more examples in the real world? f Camera: 30 Frames/s Human Eyessf'f Summary2s s f T f
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年物業(yè)管理聯(lián)合運營協(xié)議范本版B版
- 2024年版家用電器保修協(xié)議樣本版B版
- 木制裝飾木工班組施工合同
- 廣東省八校2025屆高三上學期第四次聯(lián)合教學質量檢測數(shù)學試題(解析版)
- 2024年校園綠化管理合同3篇
- 福建省龍巖市2023-2024學年高二上學期期末教學質量檢查數(shù)學試題(解析版)
- 高層溫泉度假村施工總承包合同
- 2025物業(yè)保潔服務合同
- 劇院影院防水防腐施工合同
- 教育培訓資金投入規(guī)劃
- 論語十二章高中語文原文
- 成語故事入木三分
- 2022-2023學年北京市海淀區(qū)七年級(上)期末歷史試題(A)(含答案解析)
- 消化內科門診技巧培訓課件
- 少兒機器人培訓課件
- 中藥封包療法在臨床中的應用護理課件
- 水泥砼試模自校隨機表
- 訴訟案件的總結匯報
- 山東省棗莊市滕州市2023-2024學年七年級上學期期末數(shù)學試題(含答案)
- 北京市東城區(qū)2023-2024學年高二上學期期末考試數(shù)學
- 部隊春節(jié)文藝匯演策劃方案
評論
0/150
提交評論