




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
1、二、兩要素等反復實驗的方差分析二、兩要素等反復實驗的方差分析一、兩要素非反復實驗的方差分析一、兩要素非反復實驗的方差分析第第5.2節(jié)兩要素方差分析節(jié)兩要素方差分析 一、兩要素非反復實驗的方差分析一、兩要素非反復實驗的方差分析12,.,rA BArA AA設設有有兩兩個個因因素素因因素素 有有 個個不不同同的的水水平平12,(,)SijBsB BBA BA B有有 個個不不同同水水平平,在在的的每每一一種種水水平平組組合合,ijijXX下下做做一一次次試試驗驗,試試驗驗結(jié)結(jié)果果為為所所有有相相互互獨獨立立,要素要素B要素要素A1ArA2A1B2BsB11X21X1rX12X22X2rXsX1sX
2、2rsX1 1、兩要素實驗、兩要素實驗所所有有試試驗驗結(jié)結(jié)果果為為對兩個要素的每一組合只做一次實驗對兩個要素的每一組合只做一次實驗, 稱其稱其為為雙要素無反復實驗雙要素無反復實驗.2 2、兩要素非反復實驗、兩要素非反復實驗1111111111,.rsjijiijijrsrsijijijijXXXXrsXXXrsn 為為了了方方便便計計算算,記記2, 1,2, ,1,2, ,(0,), ijijijijijXir jsN 各各獨獨立立假設假設211 (,), , .,ijijijXNir jsX 各各獨獨立立2,.ij 均均為為未未知知參參數(shù)數(shù)3 3、數(shù)學模型、數(shù)學模型為了運用方差分析模型,需求
3、做如下變換為了運用方差分析模型,需求做如下變換設設 risjijrs111 總平均總平均rissjiji, 1 ,11 sjrriijj, 1 ,11 riii, 1, iiAA水水平平 的的效效應應,表表示示 在在總總體體平平均均數(shù)數(shù)上上引引起起的的偏偏差差jiBB水水平平的的效效應應,表表示示在在總總體體平平均均數(shù)數(shù)上上引引起起的的偏偏差差. 0 , 011 sjjrii sjjj, 1, ()ijijijij ,ijij ,ijA B因因素素A A, ,B B在在組組合合水水平平( () )交交互互效效應應101,rijijijijijs 其其中中101, .sijjir 又又由由于于只
4、只做做一一次次試試驗驗,沒沒有有0.ij 交交互互效效應應,因因而而因因而而原原模模型型可可以以轉(zhuǎn)轉(zhuǎn)化化為為要推斷要素要推斷要素A的影響能否顯著,就等價于假設檢驗的影響能否顯著,就等價于假設檢驗0111110:,:,.rrHH 不不全全為為零零0211210:,:,.ssHH 不不全全為為零零21101 21 200, ( ,), , , , , ,. ijijijijijrsijijXNir js 相相互互獨獨立立稱其為兩要素非反復實驗方差分析的數(shù)學模型稱其為兩要素非反復實驗方差分析的數(shù)學模型要推斷要素要推斷要素A的影響能否顯著,就等價于假設檢驗的影響能否顯著,就等價于假設檢驗3. 離差平方
5、和分解離差平方和分解1111111rsrsijijijijXXXXrsrs 111 2, (, , )siijjXXirs 111 2, (, , )rjijiXXjsr 211()rsTijijQXX 總離差平方和總離差平方和(總變差總變差)211()()()rsijijijijXXXXXXXX 221111()()rsrsijijiijijXXXXXX 211()rsjijXX 112() ()rsijijiijXXXXXX112() ()rsijijjijXXXXXX112() ()rsijijXXXX 11111111.1111000rsijijiijrssssijijiijjjjri
6、iiisrijijjjisjjjjsjjjjTXXXXXXXXXXXXsXsXsXsXXXXXXXXXrXrXrXrXXXrXrXrXrXXXQ 由于由于;故有 故有 211()rsijijXX TQ EQBQ AQ 隨機誤差隨機誤差平方和平方和要素要素A的引起的引起的離差平方和的離差平方和要素要素B的引起的引起的離差平方和的離差平方和21()riisXX 21()sjjrXX 211()rsijijijXXXX 211()rsEijijijQXXXX 21()rAiiQsXX 記記21()sBjjQrXX 令1111111rsrsijijijijrsrs3. 離差平方和的統(tǒng)計特性離差平方和的
7、統(tǒng)計特性111, , ,siijjirs 111, , ,rjijijsr 那么那么2211111111111()()rsrsrsrAijijijijijijijiQsXXsXXsrssr 211111()()rsrijijijijijissr 21()riiis 211rsEijijijQ 21()sBjjjQr 同理同理又由于又由于22222000100( ,), ( ,), ( ,)( ,)-( ,)ijijiNNNsrrNNsrrs ,21()()rAiiiE QsE 因此因此221112()()rrriiiiiiissEsE 22110()() rriiiiissDE 2211rii
8、rssrrs 2211()riisr 同理同理2211()()rBiiE Qrs 211()()()EE Qrs1111111, , ,()()AABBEEQQQQQQrsrs 令令那么那么22221111, , rrAiBiiisrEQEQrs 2()EE Q 01(),();AEAEHE QEQE QEQ 由由于于成成立立時時,否否則則02(),(),BEBEHE QEQE QEQ 由由于于成成立立時時,否否則則因此因此 構(gòu)造統(tǒng)計量構(gòu)造統(tǒng)計量, , ABABEEQQFFQQ 4. 統(tǒng)計量的分布統(tǒng)計量的分布0102011(, , , )ijHHirjs 由由于于, ,成成立立時時,,ijij
9、X 因因而而則則離離差差平平方方和和可可以以改改寫寫為為21()rAiiQs 211rsEijijijQ 21()sBjjQr 211()rsTijABEijQQQQ 222111() ().rsijTijQrs 0 112( , ),.ijN又又由由于于由由定定理理1 1可可知知,22211() ()./riAiQrs 22211() ()./SjBiQsr 21101(, )rEijijiQis 而而具具有有約約束束1011111(, ),- -( - )( - ).rijijjirsrrs s rrs 以以及及約約束束而而最最后后一一個個約約束束可可以以由由前前得得到到,因因而而其其獨獨
10、立立約約束束條條件件共共顯然,離差平方和公式的左右兩邊自在度滿足:顯然,離差平方和公式的左右兩邊自在度滿足:1111()()()rsrsrsrs 由柯赫倫因子分解定理由柯赫倫因子分解定理(p16定理定理1.7)可知可知:2211()EQrsrs 22111111- )(,()() - )()AAAEEQQrFF rrsQQrs (因此原假設成立時因此原假設成立時22111111- )(,()() - )()BBBEEQQsFF srsQQrs (5. 回絕域回絕域111|(,()()AAAWFFFrrs A 在在給給定定顯顯著著性性水水平平 下下,因因素素 對對試試驗驗結(jié)結(jié)果果有有顯顯著著影影
11、響響的的拒拒絕絕域域為為111B|(,()()BBWFFFsrs B 在在給給定定顯顯著著性性水水平平 下下,因因素素 對對試試驗驗結(jié)結(jié)果果有有顯顯著著影影響響的的拒拒絕絕域域為為表表5.9兩要素非反復實驗的方差分析表兩要素非反復實驗的方差分析表方差來源方差來源平方和平方和自在度自在度均方均方F值值要素要素A要素要素B總總 和和TQAQBQ1rs 1 r1 s1AAQQr 1BBQQs AAEQFQ BBEQFQ EQ11()()rs 11()()EEQQrs 誤誤 差差為了計算方便,通??梢圆捎萌缦鹿剑毫顬榱擞嬎惴奖?,通??梢圆捎萌缦鹿剑毫?211111, , ,rsrsijijijij
12、TXPTRXrs 22111111() , () ,rssrIijIIijijjiQXQXsr 那么那么, ,AIBIIEIIITQQPQQPQRQQPQRP 例例1(p1651(p165例例5.5)5.5) 為了提高某種合金鋼的強度,需求為了提高某種合金鋼的強度,需求同時調(diào)查炭同時調(diào)查炭C以及以及Ti的含量對強度的影響,以便選取的含量對強度的影響,以便選取合理的成份組合使得強度到達最大,在實驗中分別取合理的成份組合使得強度到達最大,在實驗中分別取要素要素A(C的含量的含量)3個程度,要素個程度,要素B(Ti的含量的含量)4個程度,個程度,1 2 31 2 3 4(,)(, , , , , )
13、ijA Bij 在在組組合合條條件件下下各各煉煉一一爐爐測得的強度為測得的強度為:73.571.971.067.269.067.866.465.166.865.663.963.1 B程度程度A程度程度1B2B3B2B1A2A3A試問:炭與鈦的含量對合金鋼的強度能否有顯著影響試問:炭與鈦的含量對合金鋼的強度能否有顯著影響(=0.01).解解3412,rsrs經(jīng)經(jīng)計計算算113 2974 9135 73 21., ., . , .TABEQQQQ 0 0170 022 610 9.( , ).AAEQFFQ 0 0121 913 69 78.( , ).BBBQFFQ因此炭與鈦的含量對合金鋼的強度
14、是有顯著影響因此炭與鈦的含量對合金鋼的強度是有顯著影響.1212:,:,(,),rsijijkA A AAB B BBA BtX因因素素, ,因因素素每每一一個個組組合合水水平平下下重重復復試試驗驗 次次,測測得得的的數(shù)數(shù)據(jù)據(jù)為為如如表表表表.5.12要素要素A要素要素B1A2ArA1B2BsBtXXX11112111, ,tXXX21212211, ,tXXX12122121, ,tXXX22222221, ,stssXXX12111, ,stssXXX22212, ,trrrXXX11211, ,trrrXXX22221, ,rstrsrsXXX, ,21二、雙要素等反復實驗的方差分析二、
15、雙要素等反復實驗的方差分析假設假設., 1, 1, 1),(2tksjriNXijijk .,2均為未知參數(shù)均為未知參數(shù)獨立獨立各各 ijijkX ., 2 , 1, 2 , 1, 2 , 1,), 0( ,2tksjriNXijkijkijkijijk獨獨立立各各 1. 數(shù)學模型數(shù)學模型設設 risjijrs111 總平均總平均rissjiji, 1 ,11 sjrriijj, 1 ,11 riii, 1, iiAA水水平平 的的效效應應,表表示示 在在總總體體平平均均數(shù)數(shù)上上引引起起的的偏偏差差jiBB水水平平的的效效應應,表表示示在在總總體體平平均均數(shù)數(shù)上上引引起起的的偏偏差差sjjj,
16、 1, 1100 , .rsijij 則則 ,ijijij,ijA B組組合合水水平平( () )的的交交互互作作用用效效應應110101, , , .rsijijijjsir2111101 21 21 20000, ( ,), , , , , , , ,.ijkijijijkijkijkrsrsijijijijijXNir js kt 各各相相互互獨獨立立稱其為雙要素等反復實驗方差分析的數(shù)學模型稱其為雙要素等反復實驗方差分析的數(shù)學模型 判別要素以及要素的交互作用對實驗結(jié)果能否有判別要素以及要素的交互作用對實驗結(jié)果能否有顯著影響等價于檢驗假設:顯著影響等價于檢驗假設: .,:, 0:21112
17、101不不全全為為零零rrHH .,:, 0:21122102不全為零不全為零ssHH 0311121311120:, :,.rsrsHH 不不全全為為零零2.分解離差平方和分解離差平方和 risjtkijkXrstX1111 tkijkijXtX11 sjtkijkiXstX111 ritkijkjXrtX111 risjtkijkTXXS1112)(總離差平方和總離差平方和(總變差總變差) risjtkjiijijkXXXXXX111)()()(2)(XXXXjiij risjtkjiijijkXXXXXX111)()()(2)(XXXXjiij risjtkijijkXX1112)( r
18、iiXXst12)( sjjXXrt12)( risjjiijXXXXt112)(TQ EQBQ AQ A BQ 誤差誤差平方和平方和要素要素 A 的的效應平方和效應平方和要素要素 B 的的效應平方和效應平方和要素要素A,B的交的交互效應平方和互效應平方和令1111,rstijkijkrst 3. 離差平方和的統(tǒng)計特性離差平方和的統(tǒng)計特性111, , ,siijjirs 111, , ,rjijijsr 那么那么211111111()rstrstAijkijkijkijkQstXXstrst 1112111() ()rstijijijkijkrijijijkiststr 21()riiist
19、11,tijijkkt 2111111()rstrijkijkijkistXXstr2111rstEijkijijkQ21()sBjjjQr 同理同理又由于又由于2222200000( ,), ( ,), ( ,)( ,), ( ,),ijkijijNNNstrtNNtsrt211rsA BijijijijQt 21()()rAiiiE QstE 因此因此221112()()rrriiiiiiiststEstE 22221111()()/rriiiirstErrrst 2211riirstrr 2211()riistr 同理同理2211()()rBiiE Qrs 21()()EE Qrs t1
20、1111, , ,()()()ABA BABA BEEQQQQQQrsrsQQrs t 令令那么那么22221111, , rrAiBiiistrtEQEQrs 2221111(), ()()()rsEA BijijtE QE Qrs 221111()()()rsA BijijE Qrst 01(),();AEAEHE QEQE QEQ 由由于于成成立立時時,否否則則02(),(),BEBEHE QEQE QEQ 由由于于成成立立時時,否否則則因此因此 構(gòu)造統(tǒng)計量構(gòu)造統(tǒng)計量, , ABA BABA BEEEQQQFFFQQQ 4. 統(tǒng)計量的分布統(tǒng)計量的分布01020301(, , ijijHH
21、Hir 由由于于, , ,成成立立時時,1 , ),ijkijkjsX 因因而而則則離離差差平平方方和和可可以以改改寫寫為為03(),(),A BEA BEHE QEQE QEQ 由由于于成成立立時時,否否則則21()rAiiQst 211rsA BijijijQt 21()sBjjQrt 211()rsEijkijijQ222211111() ().rstTijkijkQrst 0 12 7( , ),.ijkN又又由由于于由由定定理理可可知知,222211111,)(),(),ABA BEQQQrsQsrrs t 的的自自由由度度為為的的自自由由度度為為的的自自由由度度為為( (的的自自由
22、由度度為為顯然,離差平方和公式的左右兩邊自在度滿足:顯然,離差平方和公式的左右兩邊自在度滿足:11111()()()()rstrsrsrsrs t 由柯赫倫因子分解定理由柯赫倫因子分解定理(p27定理定理1.6)可知可知:221()EQrst rs 2211()A BQrs r s 2211()BQs 2211()AQr 221111- )(,() ()AAAEEQQrFF rrs tQQrs t (因此因此221111- )(,() ()BBBEEQQsFF srs tQQrs t (22111111- )()(- )(),() ()A BA BA BEEQQsrFFsrrs tQQrs t
23、 (5. 方差分析對應的回絕域方差分析對應的回絕域11|(,()AAAWFFFrrs tA 在在給給定定顯顯著著性性水水平平 下下,因因素素 對對試試驗驗結(jié)結(jié)果果有有顯顯著著影影響響的的拒拒絕絕域域為為11B|(,()BBWFFFsrs tB 在在給給定定顯顯著著性性水水平平 下下,因因素素 對對試試驗驗結(jié)結(jié)果果有有顯顯著著影影響響的的拒拒絕絕域域為為111A B|()(),()A BA BWFFFrsrs t ,BA 在在給給定定顯顯著著性性水水平平 下下,因因素素的的交交互互作作用用對對試試驗驗結(jié)結(jié)果果有有顯顯著著影影響響的的拒拒絕絕域域為為將上述結(jié)果總結(jié),可以得到如下表內(nèi)容將上述結(jié)果總結(jié)
24、,可以得到如下表內(nèi)容:表表5.13雙要素等反復實驗的方差分析表雙要素等反復實驗的方差分析表方差來源方差來源平方和平方和自在度自在度均方均方F比比要素要素A要素要素B交互作用交互作用誤差誤差總和總和TQEQAQBQA BQ 1 rst)1( trs1 r1 s)1)(1( sr1AAQQr 1BBQQs 11()()A BA BQQrs 1()EEQQrs t AAEQFQ BBEQFQ A BA BEQFQ 為了計算方便,通??梢圆捎萌缦鹿剑毫顬榱擞嬎惴奖?,通常可以采用如下公式:令221111111, , ,rstrstijkijkijkijkTXPTWXrst 221111112111111() , () ,()rstsrtijkijkijkjikrstijkijkUXVXstrtRXt 那么那么, , , , ABA
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 賀州昭平縣中考數(shù)學試卷
- 護理溝通心理學
- 核按鈕2024數(shù)學試卷
- 人工智能時代的文學創(chuàng)作-生成式文學與人類作者的互動-洞察及研究
- 貴州的初二數(shù)學試卷
- 2025-2030中國油氣設備用高速發(fā)電機行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 2025-2030中國橋梁鋼板行業(yè)市場發(fā)展現(xiàn)狀及發(fā)展趨勢與投資研究報告
- 邯鄲中考數(shù)學試卷
- 江蘇6下數(shù)學試卷
- 中班健康課:我會保護自己
- 浙江省溫州市瑞安市2023-2024學年四年級下學期英語期末試卷6月(含答案)
- 2025至2030中國羅伊氏乳桿菌行業(yè)市場現(xiàn)狀分析及競爭格局與投資發(fā)展報告
- 標準的編寫講課件
- 學堂在線 護理研究方法 期末考試答案
- 2025年湖南省中考英語試卷真題(含答案解析)
- 重癥超聲在急性呼吸困難快速鑒別診斷中的應用
- 2025年天津市中考英語真題試卷及答案
- 鄉(xiāng)鎮(zhèn)會議制度管理制度
- 2025至2030年中國電子束曝光系統(tǒng)行業(yè)市場研究分析及發(fā)展前景研判報告
- 2025屆重慶市梁平區(qū)英語七年級第二學期期末調(diào)研模擬試題含答案
- 2025年安徽省高考物理試卷真題(含答案解析)
評論
0/150
提交評論