高等代數(shù)課件第7章歐式空間7.1歐氏空間的定義及性質(zhì)_第1頁
高等代數(shù)課件第7章歐式空間7.1歐氏空間的定義及性質(zhì)_第2頁
高等代數(shù)課件第7章歐式空間7.1歐氏空間的定義及性質(zhì)_第3頁
高等代數(shù)課件第7章歐式空間7.1歐氏空間的定義及性質(zhì)_第4頁
全文預覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

1、歐氏空間的定義及性質(zhì)歐氏空間的定義及性質(zhì) 定義定義:設:設V(R)是實數(shù)域)是實數(shù)域R上的線性空間,上的線性空間,在在V(R)中定義了一個叫做數(shù)積的運算,即)中定義了一個叫做數(shù)積的運算,即有一定的法則,按照這個法則,對有一定的法則,按照這個法則,對V(R)中)中的任意兩個向量的任意兩個向量x,y,都能確定都能確定R中唯一一個實中唯一一個實數(shù),稱之為數(shù),稱之為x與與y的數(shù)積,記作(的數(shù)積,記作(x,y),如果這個如果這個運算具有性質(zhì):運算具有性質(zhì): ;,)1(xyyx ;,)2(yxyx ;,)3(zyzxzyx . 0,0, 0,)4( xxxxx時有時有且當且當則稱則稱V(R)關于這個數(shù)積構(gòu)

2、成一個歐氏空間。這里)關于這個數(shù)積構(gòu)成一個歐氏空間。這里x,y為任意向量,為任意向量,k為任意實數(shù)。為任意實數(shù)。數(shù)積的性質(zhì):數(shù)積的性質(zhì):(1)()(x ,ky)=k(x , y) (2) (x , y+z )=(x , y)+( x , z ) (3) (x , )=0 (4) mnjijijininjiiiilklk,1, 111),(,定義定義2 2 非負性非負性. 1齊次性齊次性. 2三角不等式三角不等式. 3 ,22221nxxxxxx 令令 . 或或的的維維向向量量為為稱稱xnx長度長度范數(shù)范數(shù)向量的長度具有下述性質(zhì):向量的長度具有下述性質(zhì):; 0,0; 0,0 xxxx時時當當時時當當;xx .yxyx 向量的長度及性質(zhì)向量的長度及性質(zhì)維向量間的夾角維向量間的夾角單位向量及單位向量及n .1 , 5 , 1 , 33 , 2 , 2 , 1的夾角的夾角與與求向量求向量 例例解解 cos2262318 .4 .,11 為為稱稱時時當當xx 單位向量單位向量 yxyxyx,a

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論