版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、. . . . 數(shù)列求和的基本方法和技巧數(shù)列是高中代數(shù)的重要容,又是學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ). 在高考和各種數(shù)學(xué)競(jìng)賽中都占有重要的地位. 數(shù)列求和是數(shù)列的重要容之一,除了等差數(shù)列和等比數(shù)列有求和公式外,大部分?jǐn)?shù)列的求和都需要一定的技巧. 一、利用常用求和公式求和利用下列常用求和公式求和是數(shù)列求和的最基本最重要的方法. 1、 等差數(shù)列求和公式:2、等比數(shù)列求和公式:3、 4、5、設(shè)Sn1+2+3+n,nN*,求的最大值.解:由等差數(shù)列求和公式得 , 當(dāng) ,即n8時(shí),二、錯(cuò)位相減法求和對(duì)一個(gè)由等差數(shù)列與等比數(shù)列對(duì)應(yīng)項(xiàng)之積組成的數(shù)列的前n項(xiàng)和,常用錯(cuò)項(xiàng)相減法。, 其中是等差數(shù)列,是等比數(shù)列,記,則, 例3
2、 求和:解:由題可知,的通項(xiàng)是等差數(shù)列2n1的通項(xiàng)與等比數(shù)列的通項(xiàng)之積設(shè).(設(shè)制錯(cuò)位)得 (錯(cuò)位相減)再利用等比數(shù)列的求和公式得:求數(shù)列前n項(xiàng)的和.三、反序相加法求和這是推導(dǎo)等差數(shù)列的前n項(xiàng)和公式時(shí)所用的方法,就是將一個(gè)數(shù)列倒過(guò)來(lái)排列(反序),再把它與原數(shù)列相加,就可以得到n個(gè).例5 求證:證明: 設(shè). 把式右邊倒轉(zhuǎn)過(guò)來(lái)得(反序) 又由可得.+得 (反序相加)求的值四、分組分項(xiàng)法求和有一類數(shù)列,既不是等差數(shù)列,也不是等比數(shù)列,若將這類數(shù)列適當(dāng)拆開,可分為幾個(gè)等差、等比或常見的數(shù)列,然后分別求和,再將其合并即可.例7 求數(shù)列的前n項(xiàng)和:,解:設(shè)將其每一項(xiàng)拆開再重新組合得(分組)當(dāng)a1時(shí), (分組
3、求和)當(dāng)時(shí),求數(shù)列n(n+1)(2n+1)的前n項(xiàng)和.解:設(shè)五、裂項(xiàng)相消法求和這是分解與組合思想在數(shù)列求和中的具體應(yīng)用. 裂項(xiàng)法的實(shí)質(zhì)是將數(shù)列中的每項(xiàng)(通項(xiàng))分解,然后重新組合,使之能消去一些項(xiàng),最終達(dá)到求和的目的. 通項(xiàng)分解(裂項(xiàng))如:(1) (2)(3) (4)(5)(6) 例9 求數(shù)列的前n項(xiàng)和.解:設(shè)(裂項(xiàng))則 (裂項(xiàng)求和) 例10 在數(shù)列an中,又,求數(shù)列bn的前n項(xiàng)的和.解: (裂項(xiàng)) 數(shù)列bn的前n項(xiàng)和(裂項(xiàng)求和) 六、并項(xiàng)法求和針對(duì)一些特殊的數(shù)列,將某些項(xiàng)合并在一起就具有某種特殊的性質(zhì),因此,在求數(shù)列的和時(shí),可將這些項(xiàng)放在一起先求和,然后再求Sn.例12 求cos1°
4、+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:設(shè)Sn cos1°+ cos2°+ cos3°+···+ cos178°+ cos179° (找特殊性質(zhì)項(xiàng))Sn (cos1°+ cos179°)+( cos2°+ cos178°)+(cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90° (合并求和) 0例13 數(shù)列an:,求S2002.解:設(shè)S2002由可得(找特殊性質(zhì)項(xiàng))S2002(合并求和) 5七、利用數(shù)列的通項(xiàng)求和先根據(jù)數(shù)列的結(jié)構(gòu)與特征進(jìn)行分析,找出數(shù)列的通項(xiàng)與其特征,然后再利用數(shù)列的通項(xiàng)揭示的規(guī)律來(lái)求數(shù)列的前n項(xiàng)和,是一個(gè)重要的方法.例15 求之和
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 招標(biāo)文件中的運(yùn)輸說(shuō)明
- 增長(zhǎng)的算法-空手
- 2024年九年級(jí)化學(xué)上冊(cè) 第二單元 課題1 空氣教案 (新版)新人教版
- 2024-2025學(xué)年高中數(shù)學(xué) 第一章 預(yù)備知識(shí) 4 一元二次函數(shù)與一元二次不等式 1.4.3 一元二次不等式的應(yīng)用教案 北師大版必修第一冊(cè)
- 2023六年級(jí)英語(yǔ)下冊(cè) Unit 8 What′s Your Dream第4課時(shí)教案 陜旅版(三起)
- 2024-2025學(xué)年新教材高中歷史 第一單元 古代文明的產(chǎn)生與發(fā)展 第1課 文明的產(chǎn)生與早期發(fā)展教學(xué)教案 新人教版必修《中外歷史綱要(下)》
- 八年級(jí)物理上冊(cè) 4.2《探究汽化和液化的特點(diǎn)》教學(xué)設(shè)計(jì) (新版)粵教滬版
- 2024-2025學(xué)年高中歷史下學(xué)期第1周 新中國(guó)初期的外交教學(xué)設(shè)計(jì)
- 易制爆化學(xué)品庫(kù)管員職責(zé)
- 鉆井糾斜技術(shù)服務(wù)合同(2篇)
- 地下室人防門安裝技術(shù)創(chuàng)新
- 夜市開街策劃方案
- 新余網(wǎng)約車考證
- 腎淀粉樣變性教學(xué)演示課件
- 《臺(tái)海危機(jī)》課件
- 中醫(yī)基礎(chǔ)論述題
- 軍用飛機(jī)科普知識(shí)講座
- 駕駛員心理測(cè)試題
- 中小學(xué)生勞動(dòng)教育的跨學(xué)科融合案例
- 人工智能在醫(yī)療服務(wù)中的應(yīng)用
- 醫(yī)院內(nèi)肺炎預(yù)防與控制標(biāo)準(zhǔn)操作規(guī)程
評(píng)論
0/150
提交評(píng)論