版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、圓錐曲線的方程與性質(zhì)1橢圓(1)橢圓概念平面內(nèi)與兩個定點、的距離的和等于常數(shù)2(大于)的點的軌跡叫做橢圓。這兩個定點叫做橢圓的焦點,兩焦點的距離2c叫橢圓的焦距。若為橢圓上任意一點,則有。橢圓的標(biāo)準(zhǔn)方程為:()(焦點在x軸上)或()(焦點在y軸上)。注:以上方程中的大小,其中;在和兩個方程中都有的條件,要分清焦點的位置,只要看和的分母的大小。例如橢圓(,)當(dāng)時表示焦點在軸上的橢圓;當(dāng)時表示焦點在軸上的橢圓。(2)橢圓的性質(zhì)范圍:由標(biāo)準(zhǔn)方程知,說明橢圓位于直線,所圍成的矩形里;對稱性:在曲線方程里,若以代替方程不變,所以若點在曲線上時,點也在曲線上,所以曲線關(guān)于軸對稱,同理,以代替方程不變,則曲
2、線關(guān)于軸對稱。若同時以代替,代替方程也不變,則曲線關(guān)于原點對稱。所以,橢圓關(guān)于軸、軸和原點對稱。這時,坐標(biāo)軸是橢圓的對稱軸,原點是對稱中心,橢圓的對稱中心叫橢圓的中心;頂點:確定曲線在坐標(biāo)系中的位置,常需要求出曲線與軸、軸的交點坐標(biāo)。在橢圓的標(biāo)準(zhǔn)方程中,令,得,則,是橢圓與軸的兩個交點。同理令得,即,是橢圓與軸的兩個交點。所以,橢圓與坐標(biāo)軸的交點有四個,這四個交點叫做橢圓的頂點。同時,線段、分別叫做橢圓的長軸和短軸,它們的長分別為和,和分別叫做橢圓的長半軸長和短半軸長。由橢圓的對稱性知:橢圓的短軸端點到焦點的距離為;在中,且,即;離心率:橢圓的焦距與長軸的比叫橢圓的離心率。,且越接近,就越接近
3、,從而就越小,對應(yīng)的橢圓越扁;反之,越接近于,就越接近于,從而越接近于,這時橢圓越接近于圓。當(dāng)且僅當(dāng)時,兩焦點重合,圖形變?yōu)閳A,方程為。2雙曲線(1)雙曲線的概念平面上與兩點距離的差的絕對值為非零常數(shù)的動點軌跡是雙曲線()。注意:式中是差的絕對值,在條件下;時為雙曲線的一支;時為雙曲線的另一支(含的一支);當(dāng)時,表示兩條射線;當(dāng)時,不表示任何圖形;兩定點叫做雙曲線的焦點,叫做焦距。(2)雙曲線的性質(zhì)范圍:從標(biāo)準(zhǔn)方程,看出曲線在坐標(biāo)系中的范圍:雙曲線在兩條直線的外側(cè)。即,即雙曲線在兩條直線的外側(cè)。對稱性:雙曲線關(guān)于每個坐標(biāo)軸和原點都是對稱的,這時,坐標(biāo)軸是雙曲線的對稱軸,原點是雙曲線的對稱中心,
4、雙曲線的對稱中心叫做雙曲線的中心。頂點:雙曲線和對稱軸的交點叫做雙曲線的頂點。在雙曲線的方程里,對稱軸是軸,所以令得,因此雙曲線和軸有兩個交點,他們是雙曲線的頂點。令,沒有實根,因此雙曲線和y軸沒有交點。1)注意:雙曲線的頂點只有兩個,這是與橢圓不同的(橢圓有四個頂點),雙曲線的頂點分別是實軸的兩個端點。2)實軸:線段叫做雙曲線的實軸,它的長等于叫做雙曲線的實半軸長。虛軸:線段叫做雙曲線的虛軸,它的長等于叫做雙曲線的虛半軸長。漸近線:注意到開課之初所畫的矩形,矩形確定了兩條對角線,這兩條直線即稱為雙曲線的漸近線。從圖上看,雙曲線的各支向外延伸時,與這兩條直線逐漸接近。等軸雙曲線:1)定義:實軸
5、和虛軸等長的雙曲線叫做等軸雙曲線。定義式:;2)等軸雙曲線的性質(zhì):(1)漸近線方程為: ;(2)漸近線互相垂直。注意以上幾個性質(zhì)與定義式彼此等價。亦即若題目中出現(xiàn)上述其一,即可推知雙曲線為等軸雙曲線,同時其他幾個亦成立。3)注意到等軸雙曲線的特征,則等軸雙曲線可以設(shè)為: ,當(dāng)時交點在軸,當(dāng)時焦點在軸上。注意與的區(qū)別:三個量中不同(互換)相同,還有焦點所在的坐標(biāo)軸也變了。3拋物線(1)拋物線的概念平面內(nèi)與一定點F和一條定直線l的距離相等的點的軌跡叫做拋物線(定點F不在定直線l上)。定點F叫做拋物線的焦點,定直線l叫做拋物線的準(zhǔn)線。方程叫做拋物線的標(biāo)準(zhǔn)方程。注意:它表示的拋物線的焦點在x軸的正半軸
6、上,焦點坐標(biāo)是F(,0),它的準(zhǔn)線方程是 ;(2)拋物線的性質(zhì)一條拋物線,由于它在坐標(biāo)系的位置不同,方程也不同,有四種不同的情況,所以拋物線的標(biāo)準(zhǔn)方程還有其他幾種形式:,.這四種拋物線的圖形、標(biāo)準(zhǔn)方程、焦點坐標(biāo)以及準(zhǔn)線方程如下表:標(biāo)準(zhǔn)方程圖形焦點坐標(biāo)準(zhǔn)線方程范圍對稱性軸軸軸軸頂點離心率說明:(1)通徑:過拋物線的焦點且垂直于對稱軸的弦稱為通徑;(2)拋物線的幾何性質(zhì)的特點:有一個頂點,一個焦點,一條準(zhǔn)線,一條對稱軸,無對稱中心,沒有漸近線;(3)注意強調(diào)的幾何意義:是焦點到準(zhǔn)線的距離。4. 高考數(shù)學(xué)圓錐曲線部分知識點梳理1、 方程的曲線:在平面直角坐標(biāo)系中,如果某曲線C(看作適合某種條件的點的
7、集合或軌跡 )上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關(guān)系:(1)曲線上的點的坐標(biāo)都是這個方程的解;(2)以這個方程的解為坐標(biāo)的點都是曲線上的點,那么這個方程叫做曲線的方程;這條曲線叫做方程的曲線。點與曲線的關(guān)系:若曲線C的方程是f(x,y)=0,則點P0(x0,y0)在曲線C上f(x0,y 0)=0;點P0(x0,y0)不在曲線C上f(x0,y0)0。兩條曲線的交點:若曲線C1,C2的方程分別為f1(x,y)=0,f2(x,y)=0,則點P0(x0,y0)是C1,C2的交點方程組有n個不同的實數(shù)解,兩條曲線就有n個不同的交點;方程組沒有實數(shù)解,曲線就沒有交點。二、圓:1、定義
8、:點集MOM=r,其中定點O為圓心,定長r為半徑.2、方程:(1)標(biāo)準(zhǔn)方程:圓心在c(a,b),半徑為r的圓方程是(x-a)2+(y-b)2=r2 圓心在坐標(biāo)原點,半徑為r的圓方程是x2+y2=r2(2)一般方程:當(dāng)D2+E2-4F0時,一元二次方程x2+y2+Dx+Ey+F=0叫做圓的一般方程,圓心為半徑是。配方,將方程x2+y2+Dx+Ey+F=0化為(x+)2+(y+)2=當(dāng)D2+E2-4F=0時,方程表示一個點(-,-);當(dāng)D2+E2-4F0時,方程不表示任何圖形.(3) 點與圓的位置關(guān)系 已知圓心C(a,b),半徑為r,點M的坐標(biāo)為(x0,y0),則MCr點M在圓C內(nèi),MC=r點M在
9、圓C上,MCr點M在圓C內(nèi),其中MC=。(4) 直線和圓的位置關(guān)系:直線和圓有相交、相切、相離三種位置關(guān)系:直線與圓相交有兩個公共點;直線與圓相切有一個公共點;直線與圓相離沒有公共點。直線和圓的位置關(guān)系的判定:(i)判別式法;(ii)利用圓心C(a,b)到直線Ax+By+C=0的距離與半徑r的大小關(guān)系來判定。三、圓錐曲線的統(tǒng)一定義:平面內(nèi)的動點P(x,y)到一個定點F(c,0)的距離與到不通過這個定點的一條定直線l的距離之 比是一個常數(shù)e(e0),則動點的軌跡叫做圓錐曲線。其中定點F(c,0)稱為焦點,定直線l稱為準(zhǔn)線,正常數(shù)e稱為離心率。當(dāng)0e1時,軌跡為橢圓;當(dāng)e=1時,軌跡為拋物線;當(dāng)e
10、1時,軌跡為雙曲線。四、橢圓、雙曲線、拋物線:橢圓雙曲線拋物線定義1到兩定點F1,F2的距離之和為定值2a(2a>|F1F2|)的點的軌跡2與定點和直線的距離之比為定值e的點的軌跡.(0<e<1)1到兩定點F1,F2的距離之差的絕對值為定值2a(0<2a<|F1F2|)的點的軌跡2與定點和直線的距離之比為定值e的點的軌跡.(e>1)與定點和直線的距離相等的點的軌跡.軌跡條件點集:(MMF1+MF2=2a,F 1F22a.點集:MMF1-MF2.=±2a,F2F22a.點集M MF=點M到直線l的距離.圖形方程標(biāo)準(zhǔn)方程(>0)(a>0,b
11、>0)參數(shù)方程(t為參數(shù))范圍a£x£a,b£y£b|x| ³ a,yÎRx³0中心原點O(0,0)原點O(0,0)頂點(a,0), (a,0), (0,b) , (0,b)(a,0), (a,0)(0,0)對稱軸x軸,y軸;長軸長2a,短軸長2bx軸,y軸;實軸長2a, 虛軸長2b.x軸焦點F1(c,0), F2(c,0)F1(c,0), F2(c,0)準(zhǔn) 線x=±準(zhǔn)線垂直于長軸,且在橢圓外.x=±準(zhǔn)線垂直于實軸,且在兩頂點的內(nèi)側(cè).x=-準(zhǔn)線與焦點位于頂點兩側(cè),且到頂點的距離相等.焦距2c (c=
12、)2c (c=)離心率e=1【備注1】雙曲線:等軸雙曲線:雙曲線稱為等軸雙曲線,其漸近線方程為,離心率.共軛雙曲線:以已知雙曲線的虛軸為實軸,實軸為虛軸的雙曲線,叫做已知雙曲線的共軛雙曲線.與互為共軛雙曲線,它們具有共同的漸近線:.共漸近線的雙曲線系方程:的漸近線方程為如果雙曲線的漸近線為時,它的雙曲線方程可設(shè)為.【備注2】拋物線:(1)拋物線=2px(p>0)的焦點坐標(biāo)是(,0),準(zhǔn)線方程x=- ,開口向右;拋物線=-2px(p>0)的焦點坐標(biāo)是(-,0),準(zhǔn)線方程x=,開口向左;拋物線=2py(p>0)的焦點坐標(biāo)是(0,),準(zhǔn)線方程y=-,開口向上;拋物線=-2py(p&
13、gt;0)的焦點坐標(biāo)是(0,-),準(zhǔn)線方程y=,開口向下.(2)拋物線=2px(p>0)上的點M(x0,y0)與焦點F的距離;拋物線=-2px(p>0)上的點M(x0,y0)與焦點F的距離(3)設(shè)拋物線的標(biāo)準(zhǔn)方程為=2px(p>0),則拋物線的焦點到其頂點的距離為,頂點到準(zhǔn)線的距離,焦點到準(zhǔn)線的距離為p.(4)已知過拋物線=2px(p>0)焦點的直線交拋物線于A、B兩點,則線段AB稱為焦點弦,設(shè)A(x1,y1),B(x2,y2),則弦長=+p或(為直線AB的傾斜角),(叫做焦半徑).五、坐標(biāo)的變換:(1)坐標(biāo)變換:在解析幾何中,把坐標(biāo)系的變換(如改變坐標(biāo)系原點的位置或坐
14、標(biāo)軸的方向)叫做坐標(biāo)變換.實施坐標(biāo)變換時,點的位置,曲線的形狀、大小、位置都不改變,僅僅只改變點的坐標(biāo)與曲線的方程.(2)坐標(biāo)軸的平移:坐標(biāo)軸的方向和長度單位不改變,只改變原點的位置,這種坐標(biāo)系的變換叫做坐標(biāo)軸的平移,簡稱移軸。(3)坐標(biāo)軸的平移公式:設(shè)平面內(nèi)任意一點M,它在原坐標(biāo)系xOy中的坐標(biāo)是(x,y),在新坐標(biāo)系x Oy中的坐標(biāo)是.設(shè)新坐標(biāo)系的原點O在原坐標(biāo)系xOy中的坐標(biāo)是(h,k),則 或 叫做平移(或移軸)公式.(4) 中心或頂點在(h,k)的圓錐曲線方程見下表: 方 程焦 點焦 線對稱軸橢圓+=1(±c+h,k)x=±+hx=hy=k+ =1(h,±
15、;c+k)y=±+kx=hy=k雙曲線-=1(±c+h,k)x=±+kx=hy=k-=1(h,±c+h)y=±+kx=hy=k拋物線(y-k)2=2p(x-h)(+h,k)x=-+hy=k(y-k)2=-2p(x-h)(-+h,k)x=+hy=k(x-h)2=2p(y-k)(h, +k)y=-+kx=h(x-h)2=-2p(y-k)(h,- +k)y=+kx=h六、橢圓的常用結(jié)論:1. 點P處的切線PT平分PF1F2在點P處的外角.2. PT平分PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.
16、3. 以焦點弦PQ為直徑的圓必與對應(yīng)準(zhǔn)線相離.4. 以焦點半徑PF1為直徑的圓必與以長軸為直徑的圓內(nèi)切.5. 若在橢圓上,則過的橢圓的切線方程是.6. 若在橢圓外,則過作橢圓的兩條切線切點為P1、P2,則切點弦P1P2的直線方程是.7. 橢圓 (ab0)的左右焦點分別為F1,F(xiàn) 2,點P為橢圓上任意一點,則橢圓的焦點角形的面積為.8. 橢圓(ab0)的焦半徑公式,( ,).9. 設(shè)過橢圓焦點F作直線與橢圓相交 P、Q兩點,A為橢圓長軸上一個頂點,連結(jié)AP 和AQ分別交相應(yīng)于焦點F的橢圓準(zhǔn)線于M、N兩點,則MFNF.10. 過橢圓一個焦點F的直線與橢圓交于兩點P、Q, A1、A2為橢圓長軸上的頂
17、點,A1P和A2Q交于點M,A2P和A1Q交于點N,則MFNF.11. AB是橢圓的不平行于對稱軸的弦,M為AB的中點,則,即。12. 若在橢圓內(nèi),則被Po所平分的中點弦的方程是;【推論】:1、若在橢圓內(nèi),則過Po的弦中點的軌跡方程是。橢圓(abo)的兩個頂點為,,與y軸平行的直線交橢圓于P1、P2時A1P1與A2P2交點的軌跡方程是.2、過橢圓 (a0, b0)上任一點任意作兩條傾斜角互補的直線交橢圓于B,C兩點,則直線BC有定向且(常數(shù)).3、若P為橢圓(ab0)上異于長軸端點的任一點,F1, F 2是焦點, , ,則.4、設(shè)橢圓(ab0)的兩個焦點為F1、F2,P(異于長軸端點)為橢圓上
18、任意一點,在PF1F2中,記, ,,則有.5、若橢圓(ab0)的左、右焦點分別為F1、F2,左準(zhǔn)線為L,則當(dāng)0e時,可在橢圓上求一點P,使得PF1是P到對應(yīng)準(zhǔn)線距離d與PF2的比例中項.6、P為橢圓(ab0)上任一點,F1,F2為二焦點,A為橢圓內(nèi)一定點,則,當(dāng)且僅當(dāng)三點共線時,等號成立.7、橢圓與直線有公共點的充要條件是.8、已知橢圓(ab0),O為坐標(biāo)原點,P、Q為橢圓上兩動點,且.(1);(2)|OP|2+|OQ|2的最大值為;(3)的最小值是.9、過橢圓(ab0)的右焦點F作直線交該橢圓右支于M,N兩點,弦MN的垂直平分線交x軸于P,則.10、已知橢圓( ab0),A、B、是橢圓上的兩
19、點,線段AB的垂直平分線與x軸相交于點, 則.11、設(shè)P點是橢圓( ab0)上異于長軸端點的任一點,F1、F2為其焦點記,則(1).(2) .12、設(shè)A、B是橢圓( ab0)的長軸兩端點,P是橢圓上的一點,, ,,c、e分別是橢圓的半焦距離心率,則有(1).(2) .(3) .13、已知橢圓( ab0)的右準(zhǔn)線與x軸相交于點,過橢圓右焦點的直線與橢圓相交于A、B兩點,點在右準(zhǔn)線上,且軸,則直線AC經(jīng)過線段EF 的中點.14、過橢圓焦半徑的端點作橢圓的切線,與以長軸為直徑的圓相交,則相應(yīng)交點與相應(yīng)焦點的連線必與切線垂直.15、過橢圓焦半徑的端點作橢圓的切線交相應(yīng)準(zhǔn)線于一點,則該點與焦點的連線必與
20、焦半徑互相垂直.16、橢圓焦三角形中,內(nèi)點到一焦點的距離與以該焦點為端點的焦半徑之比為常數(shù)e(離心率). (注:在橢圓焦三角形中,非焦頂點的內(nèi)、外角平分線與長軸交點分別稱為內(nèi)、外點.)17、橢圓焦三角形中,內(nèi)心將內(nèi)點與非焦頂點連線段分成定比e.18、橢圓焦三角形中,半焦距必為內(nèi)、外點到橢圓中心的比例中項.七、雙曲線的常用結(jié)論:1、點P處的切線PT平分PF1F2在點P處的內(nèi)角.2、PT平分PF1F2在點P處的內(nèi)角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.3、以焦點弦PQ為直徑的圓必與對應(yīng)準(zhǔn)線相交.4、以焦點半徑PF1為直徑的圓必與以實軸為直徑的圓相切.(內(nèi)切:P
21、在右支;外切:P在左支)5、若在雙曲線(a0,b0)上,則過的雙曲線的切線方程是.6、若在雙曲線(a0,b0)外 ,則過Po作雙曲線的兩條切線切點為P1、P2,則切點弦P1P2的直線方程是.7、雙曲線(a0,bo)的左右焦點分別為F1,F(xiàn) 2,點P為雙曲線上任意一點,則雙曲線的焦點角形的面積為.8、雙曲線(a0,bo)的焦半徑公式:( , )當(dāng)在右支上時,,;當(dāng)在左支上時,,。9、設(shè)過雙曲線焦點F作直線與雙曲線相交 P、Q兩點,A為雙曲線長軸上一個頂點,連結(jié)AP 和AQ分別交相應(yīng)于焦點F的雙曲線準(zhǔn)線于M、N兩點,則MFNF.10、過雙曲線一個焦點F的直線與雙曲線交于兩點P、Q, A1、A2為雙
22、曲線實軸上的頂點,A1P和A2Q交于點M,A2P和A1Q交于點N,則MFNF.11、AB是雙曲線(a0,b0)的不平行于對稱軸的弦,M為AB的中點,則,即。12、若在雙曲線(a0,b0)內(nèi),則被Po所平分的中點弦的方程是.13、若在雙曲線(a0,b0)內(nèi),則過Po的弦中點的軌跡方程是.【推論】:1、雙曲線(a0,b0)的兩個頂點為,,與y軸平行的直線交雙曲線于P1、P2時A1P1與A2P2交點的軌跡方程是.2、過雙曲線(a0,bo)上任一點任意作兩條傾斜角互補的直線交雙曲線于B,C兩點,則直線BC有定向且(常數(shù)).3、若P為雙曲線(a0,b0)右(或左)支上除頂點外的任一點,F1, F 2是焦
23、點, , ,則(或).4、設(shè)雙曲線(a0,b0)的兩個焦點為F1、F2,P(異于長軸端點)為雙曲線上任意一點,在PF1F2中,記, ,,則有.5、若雙曲線(a0,b0)的左、右焦點分別為F1、F2,左準(zhǔn)線為L,則當(dāng)1e時,可在雙曲線上求一點P,使得PF1是P到對應(yīng)準(zhǔn)線距離d與PF2的比例中項.6、P為雙曲線(a0,b0)上任一點,F1,F2為二焦點,A為雙曲線內(nèi)一定點,則,當(dāng)且僅當(dāng)三點共線且和在y軸同側(cè)時,等號成立.7、雙曲線(a0,b0)與直線有公共點的充要條件是.8、已知雙曲線(ba 0),O為坐標(biāo)原點,P、Q為雙曲線上兩動點,且.(1);(2)|OP|2+|OQ|2的最小值為;(3)的最
24、小值是.9、過雙曲線(a0,b0)的右焦點F作直線交該雙曲線的右支于M,N兩點,弦MN的垂直平分線交x軸于P,則.10、已知雙曲線(a0,b0),A、B是雙曲線上的兩點,線段AB的垂直平分線與x軸相交于點, 則或.11、設(shè)P點是雙曲線(a0,b0)上異于實軸端點的任一點,F1、F2為其焦點記,則(1).(2) .12、設(shè)A、B是雙曲線(a0,b0)的長軸兩端點,P是雙曲線上的一點,, ,,c、e分別是雙曲線的半焦距離心率,則有(1).(2) .(3) .13、已知雙曲線(a0,b0)的右準(zhǔn)線與x軸相交于點,過雙曲線右焦點的直線與雙曲線相交于A、B兩點,點在右準(zhǔn)線上,且軸,則直線AC經(jīng)過線段EF 的中點.14、過雙曲線焦半徑的端點作雙曲線的切線,與以長軸為直徑的圓相交,則相應(yīng)交點與相應(yīng)焦點的連線必與切線垂直.15、過雙曲線焦半徑的端點作雙曲線的切線交相應(yīng)準(zhǔn)線于一點,則該點與焦點的連線必與焦半徑互相垂直.16、雙曲線焦三角形中,外點到一焦點的距離與以該焦點為端點的焦半徑之比為常數(shù)e(離心率).(注:在雙曲線焦三角形中,非焦頂點的內(nèi)、外角平分線與長軸交點分別稱為內(nèi)、外點).17、雙曲線焦三角形中,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版特種作業(yè)安全員資質(zhì)認(rèn)證服務(wù)協(xié)議書3篇
- 2025年度護理機構(gòu)護工服務(wù)合作協(xié)議書規(guī)范3篇
- 二零二五年度二手房購置貸款擔(dān)保合同2篇
- 2025版監(jiān)理合同延期補充協(xié)議-工期調(diào)整與合同金額3篇
- 2025年度醫(yī)療單位員工勞動安全與醫(yī)療設(shè)備使用合同3篇
- 2025年度林業(yè)生態(tài)建設(shè)樹木種植承包合同樣本3篇
- 成都醫(yī)學(xué)院《鋼琴基礎(chǔ)(一)》2023-2024學(xué)年第一學(xué)期期末試卷
- 成都體育學(xué)院《社會統(tǒng)計與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 成都體育學(xué)院《CAM編程基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年研究員與學(xué)校合作契約2篇
- 供應(yīng)商可持續(xù)發(fā)展計劃
- 生姜的產(chǎn)地分布
- 普通高中學(xué)業(yè)水平合格性考試(會考)語文試題(附答案)
- 統(tǒng)編語文八上文言文過關(guān)小測驗-《愚公移山》
- 12、口腔科診療指南及技術(shù)操作規(guī)范
- 醫(yī)藥電商行業(yè)發(fā)展趨勢報告
- 2020年10月自考00020高等數(shù)學(xué)一高數(shù)一試題及答案含評分標(biāo)準(zhǔn)
- 勞務(wù)派遣方案
- 電費異常問題篩選及處理途徑
- 幼兒園中班語言繪本《三只蝴蝶》課件
- 高中英語校本教材《英語美文閱讀與欣賞》
評論
0/150
提交評論