版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、第五講原函數(shù)與不定積分Cauchy積分公式解析函數(shù)的高階導(dǎo)數(shù)& 1. 原函數(shù)與不定積分的概念原函數(shù)與不定積分的概念& 2. 積分計算公式積分計算公式3.4 原函數(shù)與不定積分原函數(shù)與不定積分 1. 原函數(shù)與不定積分的概念原函數(shù)與不定積分的概念 由由2基本定理的推論知:設(shè)基本定理的推論知:設(shè)f (z)在單連通區(qū)在單連通區(qū)域域B內(nèi)解析,則對內(nèi)解析,則對B中任意曲線中任意曲線C, 積分積分c fdz與路與路徑無關(guān),只與起點和終點有關(guān)。徑無關(guān),只與起點和終點有關(guān)。 當(dāng)起點固定在當(dāng)起點固定在z0, 終點終點z在在B內(nèi)變動內(nèi)變動,c f (z)dz在在B內(nèi)就定義了一個變上限的單值函數(shù),記作內(nèi)
2、就定義了一個變上限的單值函數(shù),記作 zzdfzF0)1()()( 定理定理 設(shè)設(shè)f (z)在單連通區(qū)域在單連通區(qū)域B內(nèi)解析,則內(nèi)解析,則F(z)在在B內(nèi)解析,且內(nèi)解析,且)()( zfzF 定義定義 若函數(shù)若函數(shù) (z) 在區(qū)域在區(qū)域B內(nèi)的導(dǎo)數(shù)等于內(nèi)的導(dǎo)數(shù)等于f (z) ,即,即 ,稱稱 (z)為為f (z)在在B內(nèi)的原函數(shù)內(nèi)的原函數(shù). )()( zfz zzdfzF0)()( 上面定理表明上面定理表明 是是f (z)的一個的一個原函數(shù)。原函數(shù)。設(shè)設(shè)H (z)與與G(z)是是f (z)的任何兩個原函數(shù),的任何兩個原函數(shù),)(,)()(0)()()( )( )()(為任意常數(shù)為任意常數(shù)cczHz
3、GzfzfzHzGzHzG 這表明:這表明:f (z)的任何兩個原函數(shù)相差一個常數(shù)。的任何兩個原函數(shù)相差一個常數(shù)。( (見第二章見第二章2 2例例3)3) czFdzzf)()(2. 積分計算公式積分計算公式定義定義 設(shè)設(shè)F(z)是是f (z)的一個原函數(shù),稱的一個原函數(shù),稱F(z)+c(c為為任意常數(shù)任意常數(shù))為為f (z)的不定積分,記作的不定積分,記作定理定理 設(shè)設(shè)f (z)在單連通區(qū)域在單連通區(qū)域B內(nèi)解析,內(nèi)解析, F(z)是是f (z)的一個原函數(shù),則的一個原函數(shù),則),()()()(100110BzzzFzFdzzfzz A 此公式類似于微積分學(xué)中的牛頓萊布尼茲公式此公式類似于微積
4、分學(xué)中的牛頓萊布尼茲公式.A 但是要求函數(shù)是解析的但是要求函數(shù)是解析的,比以前的連續(xù)條件要強比以前的連續(xù)條件要強例例1 計算下列積分:計算下列積分:;3,3, 0Re, 31)12iizzCdzzC終點為終點為起點為起點為為半圓周:為半圓周:其中其中 解解1) 32|1211,00Re1331222izdzzzzziiC 故故上上解解析析,在在32319312222222ideideiedzziiiC :解解., 1arg1)2的任意曲線的任意曲線終點為終點為起點為起點為內(nèi)內(nèi):為單連通區(qū)域為單連通區(qū)域其中其中zzDCdzzC ).(ln1lnln11ln,1DzzzdzzzzDzC 故故的的一
5、一個個原原函函數(shù)數(shù),是是又又內(nèi)內(nèi)解解析析在在解解2)例例3 計算下列積分:計算下列積分:32|332izdzziiii 11111|11 nnnnnzndzz iiizzzzdzziicossin|cossinsin00 小結(jié)小結(jié) 求積分的方法求積分的方法knkkncxfdzzf 1)(lim)()1( udyvdxivdyudxdzzfc)()2(dttztzfdzzfc)()()()3( 0)(,)()4( cdzzfBCBzf則則單單連連通通解解析析若若)()(,)()(,)()5(1010zfzFzFdzzfBBzfzzzz 則則單單連連通通內(nèi)內(nèi)解解析析在在若若 利用利用Cauchy-
6、Goursat基本定理在多連通域上基本定理在多連通域上的推廣的推廣,即復(fù)合閉路定理即復(fù)合閉路定理,導(dǎo)出一個用邊界值表示解導(dǎo)出一個用邊界值表示解析函數(shù)內(nèi)部值的積分公式析函數(shù)內(nèi)部值的積分公式,該公式不僅給出了解析該公式不僅給出了解析函數(shù)的一個積分表達式,從而成為研究解析函數(shù)函數(shù)的一個積分表達式,從而成為研究解析函數(shù)的有力工具,而且提供了計算某些復(fù)變函數(shù)沿閉的有力工具,而且提供了計算某些復(fù)變函數(shù)沿閉路積分的方法路積分的方法.內(nèi)內(nèi) 容容 簡簡 介介3.5 Cauchy積分公式積分公式0)(.)(,)(,00000一一般般不不解解析析在在則則的的一一條條閉閉曲曲線線內(nèi)內(nèi)圍圍繞繞是是內(nèi)內(nèi)解解析析在在單單連
7、連通通設(shè)設(shè) CdzzzzfzzzzfzDCBzDzfD 100)()(CCdzzzzfdzzzzf的的內(nèi)內(nèi)部部曲曲線線在在內(nèi)內(nèi)部部的的任任意意包包含含由由復(fù)復(fù)合合閉閉路路定定理理得得CCz 10,分析分析DCz0C1)(21)()()(00000011zifdzzzzfdzzzzfdzzzzfCCC )0(01可可充充分分小小 zzzC)()(,0)(,)(0zfzfzfCzf 時時當(dāng)當(dāng)上上的的函函數(shù)數(shù)值值在在的的連連續(xù)續(xù)性性 .,這這就就是是下下面面的的定定理理這這個個猜猜想想是是對對的的DCz0C1猜想積分猜想積分特別取特別取定理定理(Cauchy 積分公式積分公式)內(nèi)內(nèi)任任意意一一點點為
8、為它它的的內(nèi)內(nèi)部部完完全全含含于于曲曲線線內(nèi)內(nèi)任任意意一一條條正正向向簡簡單單閉閉是是內(nèi)內(nèi)處處處處解解析析在在設(shè)設(shè)CzDDCDzf0)3,)2,)()1 Cdzzzzfizf00)(21)( ).(2)(lim:,)()(.000000zifdzzzzfRKdzzzzfdzzzzfCRzzzKKRCK 只只須須證證明明無無關(guān)關(guān)的的半半徑徑與與的的內(nèi)內(nèi)部部設(shè)設(shè)證明證明 )(2)( ,0, 0:000zifdzzzzfRzzK即即要要證證 kkkdzzzzfdzzzzfzifdzzzzf000001)()()(2)( 2)()(00 KKdsRdszzzfzf )()(0, 0)()(lim000
9、0zfzfRzzzfzfzz kdzzzzfzf00)()()(2)(lim000zifdzzzzfKR Cdzzzzfizf00)(21)( 積分公式仍成立.積分公式仍成立.上連續(xù)上連續(xù)及在及在內(nèi)解析,內(nèi)解析,所圍區(qū)域所圍區(qū)域在在(1)若定理條件改為(1)若定理條件改為CauchyBBCBCzf,)( A . . , , f(z)f(z) . .C C積分公式積分公式 (2)(2)定了定了內(nèi)部任一處的值也就確內(nèi)部任一處的值也就確則它在區(qū)域則它在區(qū)域確定確定在區(qū)域邊界上的值一經(jīng)在區(qū)域邊界上的值一經(jīng)即若即若值來表示值來表示的值可以用它在邊界的的值可以用它在邊界的內(nèi)部任一點內(nèi)部任一點表明函數(shù)在表明
10、函數(shù)在Cauchy CidzzzzfizfzzC000)(21)(Re:)3( 則則若若A 一個解析函數(shù)在圓心處的值等于它在一個解析函數(shù)在圓心處的值等于它在圓周上的平均值圓周上的平均值. . 200Re)Re(21dRiezfiiii 200)Re(21dzfi 443211)2sin21)1zzdzzzdzzzi)(求:求: 0sinsin21)104 zzzdzzzi iiidzzzdzdzzzzfzzz 62212321)3211()221)(444 及及例例1解解.1122線線在內(nèi)的任意簡單正向曲在內(nèi)的任意簡單正向曲為包含為包含求求 zCdzzzzC例例2 21222121212CCC
11、dzzzzdzzzzdzzzz解解CC1C21xyo 21112112CCdzzzzdzzzziizzizzzzC 4 212211210 積積分分公公式式由由).1( ,173)(, 3222ifdzzfyxCC 求求表圓周表圓周設(shè)設(shè) 例例3解解 )613(27)1(62)1( 3)76(230)( 3)173(230173)(173222 iiiifzzizzfzzzizdzzfzzC 故故又又在在全全平平面面上上處處處處解解析析,內(nèi)內(nèi) 容容 簡簡 介介 本節(jié)研究解析函數(shù)的無窮次可導(dǎo)性,并導(dǎo)本節(jié)研究解析函數(shù)的無窮次可導(dǎo)性,并導(dǎo)出高階導(dǎo)數(shù)計算公式。研究表明:一個解析函出高階導(dǎo)數(shù)計算公式。研究
12、表明:一個解析函數(shù)不僅有一階導(dǎo)數(shù),而且有各階導(dǎo)數(shù),它的值數(shù)不僅有一階導(dǎo)數(shù),而且有各階導(dǎo)數(shù),它的值也可用函數(shù)在邊界上的值通過積分來表示。這也可用函數(shù)在邊界上的值通過積分來表示。這一點與實變函數(shù)有本質(zhì)區(qū)別。一點與實變函數(shù)有本質(zhì)區(qū)別。6 解析函數(shù)的高階導(dǎo)數(shù)解析函數(shù)的高階導(dǎo)數(shù)求求導(dǎo)導(dǎo)得得兩兩邊邊在在積積分分號號下下對對對對積積分分公公式式0000)()(21)(zDzdzzzzfizfC Cdzzzzfizf200)()(21)( Cdzzzzfizf300)()(2!2)( ), 2 , 1()()(2!)(100)( ndzzzzfinzfCnn 形式上,形式上,以下將對這些公式的正確性加以證明。
13、以下將對這些公式的正確性加以證明。.,)(), 2 , 1()()(2!)(,)(000)(1DzDzfCndzzzzfinzfnzfCnn 而且它的內(nèi)部而且它的內(nèi)部任意正向簡單閉曲線任意正向簡單閉曲線的的內(nèi)圍繞內(nèi)圍繞的解析區(qū)域的解析區(qū)域為在為在其中其中階導(dǎo)數(shù)為階導(dǎo)數(shù)為它的它的的導(dǎo)數(shù)仍為解析函數(shù)的導(dǎo)數(shù)仍為解析函數(shù)解析函數(shù)解析函數(shù) 定理定理證明證明 用數(shù)學(xué)歸納法和導(dǎo)數(shù)定義。用數(shù)學(xué)歸納法和導(dǎo)數(shù)定義。zzfzzfzfDznz )()(lim)( .100000的的情情形形先先證證 Cdzzzzzfizzf 00)(21)( Cdzzzzfizf00)(21)( 由由柯柯西西積積分分公公式式 CCCd
14、zzzzzzzfidzzzzfdzzzzzfzizzfzzf)()(21)()(21)()(000000 令為令為I CCdzzzzzzzzfidzzzzfi20020)()(21)()(21 CCdszzzzzzfzdzzzzzzzzfI200200)(21)()(21 則則有有取取則則上上連連續(xù)續(xù)在在上上解解析析,在在,21min,)(,)()(0dzzzdMzfMCzfCzfCz dzzzdzzzzzzdzzdzz21,211,00000 )(*)()(21)()(lim)( 200000 Czdzzzzfizzfzzfzf 從從而而有有顯顯然然,的的長長度度),0lim(03 ICLd
15、MLzIz .2)()(的情形的情形的方法可證的方法可證式及推導(dǎo)式及推導(dǎo)再利用再利用 n Czdzzzzfizzfzzfzf300000)()(2!2)( )( lim)( 依次類推,用數(shù)學(xué)歸納法可得依次類推,用數(shù)學(xué)歸納法可得 Cnndzzzzfinzf100)()()(2!)( .,)()(無無窮窮次次可可導(dǎo)導(dǎo)內(nèi)內(nèi)解解析析即即在在具具有有各各階階導(dǎo)導(dǎo)數(shù)數(shù)內(nèi)內(nèi)在在內(nèi)內(nèi)解解析析平平面面上上在在定定理理表表明明 DDzfDzzf一個解析函數(shù)的導(dǎo)數(shù)仍為解析函數(shù)。一個解析函數(shù)的導(dǎo)數(shù)仍為解析函數(shù)。)(!2)()(:0)(10zfnidzzzzfnCn 可可計計算算積積分分用用途途 CzCdzzedzzzrzC225)1()2)1(cos)11: 求求下下列列積積分分值值例例1i
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度廠房買賣合同范本(工業(yè)互聯(lián)網(wǎng)應(yīng)用)3篇
- 2025年度環(huán)保節(jié)能產(chǎn)品包銷合作協(xié)議書4篇
- 二零二五年度電商平臺網(wǎng)絡(luò)文學(xué)充值卡銷售協(xié)議4篇
- 2025年度城市居民車庫買賣協(xié)議書2篇
- 臨時建筑2024年度施工合作標(biāo)準(zhǔn)合同版B版
- 2025年度專業(yè)廚房設(shè)備維修保養(yǎng)服務(wù)合同9篇
- 二零二五版木工家具維修服務(wù)合同4篇
- 2025年度個人額度借款合同與財務(wù)顧問服務(wù)
- 二零二五版南匯農(nóng)業(yè)志專家評審合同4篇
- 2025年度電視節(jié)目制作團隊合作協(xié)議范本4篇
- 習(xí)近平法治思想概論教學(xué)課件緒論
- 寵物會展策劃設(shè)計方案
- 孤殘兒童護理員(四級)試題
- 梁湘潤《子平基礎(chǔ)概要》簡體版
- 醫(yī)院急診醫(yī)學(xué)小講課課件:急診呼吸衰竭的處理
- 腸梗阻導(dǎo)管在臨床中的使用及護理課件
- 調(diào)料廠工作管理制度
- 小學(xué)英語單詞匯總大全打印
- 衛(wèi)生健康系統(tǒng)安全生產(chǎn)隱患全面排查
- GB/T 15114-2023鋁合金壓鑄件
- 貨物驗收單表格模板
評論
0/150
提交評論