下載本文檔
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、.2019年中考數(shù)學(xué)答題技巧解讀1、配方法 所謂配方,就是把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式。通過(guò)配方解決數(shù)學(xué)問(wèn)題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用非常非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。這是中考數(shù)學(xué)的復(fù)習(xí)方法之一。 2、因式分解法 因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式。因式分解是恒等變形的根底,它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本
2、上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。 3、換元法 換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用非常廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱(chēng)為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變?cè)ゴ嬖降囊粋€(gè)部分或改造原來(lái)的式子,使它簡(jiǎn)化,使問(wèn)題易于解決。 4、判別式法與韋達(dá)定理 一元二次方程ax2+bx+c=0a、b、c屬于R,a0根的判別,=b2-4ac,不僅用來(lái)斷定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程組,解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。 韋達(dá)定理除了一元二次方程的一個(gè)根,求另一根
3、;兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡(jiǎn)單應(yīng)用外,還可以求根的對(duì)稱(chēng)函數(shù),計(jì)論二次方程根的符號(hào),解對(duì)稱(chēng)方程組,以及解一些有關(guān)二次曲線的問(wèn)題等,都有非常廣泛的應(yīng)用。 5、待定系數(shù)法 在解數(shù)學(xué)問(wèn)題時(shí),假設(shè)先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問(wèn)題,這種解題方法稱(chēng)為待定系數(shù)法。它是常用的中考數(shù)學(xué)的復(fù)習(xí)方法之一。6、構(gòu)造法 在解題時(shí),我們常常會(huì)采用這樣的方法,通過(guò)對(duì)條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個(gè)圖形、一個(gè)方程組、一個(gè)等式、一個(gè)函數(shù)、一個(gè)等價(jià)命題 等,架起一座連接條件和結(jié)
4、論的橋梁,從而使問(wèn)題得以解決,這種解題的數(shù)學(xué)方法,我們稱(chēng)為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識(shí)互 相浸透,有利于問(wèn)題的解決。 7、反證法 反證法是一種間接證法,它是先提出一個(gè)與命題的結(jié)論相反的假設(shè),然后,從這個(gè)假設(shè)出發(fā),經(jīng)過(guò)正確的推理,導(dǎo)致矛盾,從而否認(rèn)相反的假設(shè),到達(dá)肯定原命 題正確的一種方法。反證法可以分為歸謬反證法結(jié)論的反面只有一種與窮舉反證法結(jié)論的反面不只一種。用反證法證明一個(gè)命題的步驟,大體上分為: 1反設(shè);2歸謬;3結(jié)論。 反設(shè)是反證法的根底,為了正確地作出反設(shè),掌握一些常用的互為否認(rèn)的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直
5、于 /不垂直于;等于/不等于;大小于/不大小于;都是/不都是;至少有一個(gè)/一個(gè)也沒(méi)有;至少有n個(gè)/至多有n一1個(gè);至多有一個(gè)/至少有兩 個(gè);唯一/至少有兩個(gè)。 歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過(guò)程沒(méi)有固定的形式,但必須從反設(shè)出發(fā),否那么推導(dǎo)將成為無(wú)源之水,無(wú)本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類(lèi)型:與條件矛盾;與的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。 8、面積法 平面幾何中講的面積公式以及由面積公式推出的與面積計(jì)算有關(guān)的性質(zhì)定理,不僅可用于計(jì)算面積,而且用它來(lái)證明平面幾何題有時(shí)會(huì)收到事半功倍的效果。運(yùn)用面積關(guān)系來(lái)證明或計(jì)算平面幾何題的方法,稱(chēng)為面積方法,它是幾何中的一種常用方
6、法。 用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點(diǎn)是把和未知各量用面積公式聯(lián)絡(luò)起來(lái),通過(guò)運(yùn)算到達(dá)求證的結(jié)果。所以用面積法來(lái) 解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計(jì)算,有時(shí)可以不添置補(bǔ)助線,即使需要添置輔助線,也很容易考慮到。9、幾何變換法 在數(shù)學(xué)問(wèn)題的研究中,常常運(yùn)用變換法,把復(fù)雜性問(wèn)題轉(zhuǎn)化為簡(jiǎn)單性的問(wèn)題而得到解決。所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。中 學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來(lái)很難甚至于無(wú)法下手的習(xí)題,可以借助幾何變換法,化繁為簡(jiǎn),化難為易。另一方面,也可將變換的觀點(diǎn)浸透到 中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件
7、下的研究和運(yùn)動(dòng)中的研究結(jié)合起來(lái),有利于對(duì)圖形本質(zhì)的認(rèn)識(shí)。 幾何變換包括:1平移;2旋轉(zhuǎn);3對(duì)稱(chēng)。 10、客觀性題的解題方法 選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類(lèi)題型。選擇題的題型構(gòu)思精巧,形式靈敏,可以比較全面地考察學(xué)生的根底知識(shí)和根本技能,從而增大了試卷的容量和知識(shí)覆蓋面。 填空題是標(biāo)準(zhǔn)化考試的重要題型之一,它同選擇題一樣具有考察目的明確,知識(shí)復(fù)蓋面廣,評(píng)卷準(zhǔn)確迅速,有利于考察學(xué)生的分析判斷才能和計(jì)算才能等優(yōu)點(diǎn),不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。 要想迅速、正確地解選擇題、填空題,除了具有準(zhǔn)確的計(jì)算、嚴(yán)密的推理外,還要有解選擇題、填空題的方法與技巧
8、。下面通過(guò)實(shí)例介紹常用方法。 1直接推演法:直接從命題給出的條件出發(fā),運(yùn)用概念、公式、定理等進(jìn)展推理或運(yùn)算,得出結(jié)論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。 2驗(yàn)證法:由題設(shè)找出適宜的驗(yàn)證條件,再通過(guò)驗(yàn)證,找出正確答案,亦可將供選擇的答案代入條件中去驗(yàn)證,找出正確答案,此法稱(chēng)為驗(yàn)證法也稱(chēng)代入法。當(dāng)遇到定量命題時(shí),常用此法。 3特殊元素法:用適宜的特殊元素如數(shù)或圖形代入題設(shè)條件或結(jié)論中去,從而獲得解答。這種方法叫特殊元素法。 4排除、挑選法:對(duì)于正確答案有且只有一個(gè)的選擇題,根據(jù)數(shù)學(xué)知識(shí)或推理、演算,把不正確的結(jié)論排除,余下的結(jié)論再經(jīng)挑選,從而作出正確的結(jié)論的解法叫排除、挑選
9、法。 要練說(shuō),得練看??磁c說(shuō)是統(tǒng)一的,看不準(zhǔn)就難以說(shuō)得好。練看,就是訓(xùn)練幼兒的觀察才能,擴(kuò)大幼兒的認(rèn)知范圍,讓幼兒在觀察事物、觀察生活、觀察自然的活動(dòng)中,積累詞匯、理解詞義、開(kāi)展語(yǔ)言。在運(yùn)用觀察法組織活動(dòng)時(shí),我著眼觀察于觀察對(duì)象的選擇,著力于觀察過(guò)程的指導(dǎo),著重于幼兒觀察才能和語(yǔ)言表達(dá)才能的進(jìn)步。 5圖解法:借助于符合題設(shè)條件的圖形或圖象的性質(zhì)、特點(diǎn)來(lái)判斷,作出正確的選擇稱(chēng)為圖解法。圖解法是解選擇題常用方法之一。 家庭是幼兒語(yǔ)言活動(dòng)的重要環(huán)境,為了與家長(zhǎng)配合做好幼兒閱讀訓(xùn)練工作,孩子一入園就召開(kāi)家長(zhǎng)會(huì),給家長(zhǎng)提出早期抓好幼兒閱讀的要求。我把幼兒在園里的閱讀活動(dòng)及閱讀情況及時(shí)傳遞給家長(zhǎng),要求孩子回家向家長(zhǎng)朗讀兒歌,表演故事。我和家長(zhǎng)共同配合,一道訓(xùn)練,幼兒的閱讀才能進(jìn)步很快。 6分析法:直接通過(guò)對(duì)選擇題的條件和結(jié)論,作詳盡的分析、歸納和判斷,從而選出正確的結(jié)果,稱(chēng)為分析法。 一般說(shuō)來(lái),“老師概念之形成經(jīng)歷了非常漫長(zhǎng)的歷史。楊士勛唐初學(xué)者,四門(mén)博士?春秋谷梁傳疏?曰:“師者教人以不及,故謂師為師資也。這兒的“師資,其實(shí)就是先秦而后歷代對(duì)老師的別稱(chēng)之一。?韓非子?也有云:“今有不才之子師長(zhǎng)教
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年城市照明項(xiàng)目LED路燈購(gòu)銷(xiāo)合同
- 2024年建筑工程分包協(xié)議書(shū)
- 2024年云計(jì)算服務(wù)互操作性測(cè)試合同
- 2024廣告發(fā)布委托合同模板樣本
- 2024年工程質(zhì)量檢測(cè)合同標(biāo)準(zhǔn)
- 2024年度物業(yè)服務(wù)合同:日常房屋租住過(guò)程中的管理與維護(hù)
- 2024年度旅游開(kāi)發(fā)項(xiàng)目合同
- 2024年度影視制作與發(fā)布協(xié)議
- 兒子結(jié)婚上父親致辭
- 習(xí)慣為主題的演講稿3篇
- 愛(ài)心助學(xué)基金會(huì)章程樣本
- 藥物性肝損傷的藥物治療
- Python繪圖庫(kù)Turtle詳解(含豐富示例)
- 2010年408真題及答案解析
- 【課題研究設(shè)計(jì)與論證報(bào)告】深度學(xué)習(xí)視角下幼兒園自主游戲支持策略的實(shí)踐研究
- 0~36個(gè)月兒童中醫(yī)藥健康管理服務(wù)
- 第三章藥物的化學(xué)結(jié)構(gòu)與藥代動(dòng)力
- 智慧樹(shù)關(guān)愛(ài)生命-自救與急救技能章節(jié)習(xí)題及答案
- 讓數(shù)據(jù)成為生產(chǎn)力-數(shù)據(jù)全生命周期管理
- “工匠精神”視域下的高職院校學(xué)生職業(yè)素養(yǎng)教育的路徑研究課題開(kāi)題報(bào)告
- 不要等到畢業(yè)以后(升級(jí)版)
評(píng)論
0/150
提交評(píng)論