




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、1(三)偏微分方程的數(shù)值離散方法(三)偏微分方程的數(shù)值離散方法 3.1 有限差分法 3.2 有限體積法 (有限元,譜方法,譜元,無(wú)網(wǎng)格,有限解析,邊界元,特征線) 23.1 有限差分法 3.1.1 模型方程的差分逼近 3.1.2 差分格式的構(gòu)造 3.1.3 差分方程的修正方程 3.1.4 差分方法的理論基礎(chǔ) 3.1.5 守恒型差分格式 3.1.6 偏微分方程的全離散方法33.1.1 模型方程的差分逼近43.1.2 差分格式的構(gòu)造53.1.3 差分方程的修正方程差分方程所精確逼近的微分方程稱(chēng)為修正方程 對(duì)于時(shí)間發(fā)展方程,利用展開(kāi)的方程逐步消去帶時(shí)間的高階導(dǎo)數(shù),只留空間導(dǎo)數(shù)。Warming-Hye
2、tt方法:差分方程(2)寫(xiě)成算子的形式: (3) 24121616121 )2() 1() 1(! 31! 21) 1(! 31! 21Taylor(2) 22121(1) 04422233233222133322213332221112111xuxutcxuxxuctuttuttuueuuexuxxuxxuxuuuetuttuttutuuuuuuuuuxuctuxxjxxjjttnjnjjjjjjnjnj等價(jià)于:展開(kāi)63.1.3 差分方程的修正方程 (續(xù)) 12220121212112332114444444333344433322223332222(5) 22121183,31,21, 1
3、,1) 1() 1( 211) 1( 21216122121) 1( ! 31! 21) 1( (4)u 221)(21) 1(ppppppppkkkkllxxxxxxxxllttlllttllttttttttttxxxxxxxxttxuxuxutueeeebebttbbbbebttetttutetuttutetuttuttutetuttuttuteeeueeue即有最后得到的級(jí)數(shù)表示成可以將則記算子73.1.3 差分方程的修正方程(續(xù)) ? (2) schemefor 1CFL why . min)3(81)(61, 020) 1( : , 0) 1() 1() 1(222242223212
4、21212012212)(122201212121穩(wěn)定性判別條件符合,):對(duì)于(滿足偶次項(xiàng)系數(shù)件是格式穩(wěn)定的充分必要條基本解為HyettgWarxtctcxtccckkkkeexuxuxutuppppppppppppppikxtippppppppkkkk83.1.4 差分方法的理論基礎(chǔ) 相容性,穩(wěn)定性,收斂性 等價(jià)性定理 Fourier穩(wěn)定性分析93.1.4 差分方法的理論基礎(chǔ)(續(xù)) Fourier (Von Neumann) 穩(wěn)定性分析(1) 0 , 0)(111cuuxctuunininini1Gfactor ion amplificat )()(: ) 1 ( 111111111nnik
5、xnikxnikxnikxnninininikxnniikxnniikxnniAAGeAeAeAeAuuuueAueAueAuxtciiiiiii滿足穩(wěn)定性要求的代入誤差的基本解設(shè)103.1.4 差分方法的理論基礎(chǔ)(續(xù)) Fourier (Von Neumann) 穩(wěn)定性分(續(xù)) 稱(chēng)為CFL條件 (Courant, Friedrichs, Levy)1 1 1,2sin)1 (41sin)cos1 (1sin)cos1 (1)sin(cos1122222 ifGxkxkxkGxkixkxkixkeGxik113.1.5 守恒型差分格式流體力學(xué)方程組描述物理量的守恒性;守恒律組:定義01diix
6、tfu)(),(:f),(2f 0)(, 212121212111ufuuufuuufflffxtuuxuftunljnljnljnjnjnjnjnjnj滿足相容性條件個(gè)變量的多變量函數(shù):稱(chēng)為數(shù)值通量,它是其中則為守恒型差分格式。下形式其差分格式如果具有如對(duì)于一維單個(gè)守恒律:123.1.5 守恒型差分格式(續(xù))守恒性質(zhì):非守恒的差分格式一般沒(méi)有對(duì)應(yīng)于原始守恒律的“離散守恒律”。0),(),(),(),()0 ,(),(:2/12/1112/12/102102110210210121211dttxufdxtxudttxudttxudxxudxtxutftfxuxuntftfxuxujJJnnJJ
7、xxtJtJxxnNkkJNkkJJjJjjJjJjnjnJnJJjJjnjJjJjnj守恒律:律。完全對(duì)應(yīng)于連續(xù)的該積分代表離散的守恒可以看成是積分求和再對(duì)求和守恒型差分格式對(duì)133.1.5 守恒型差分格式(續(xù))守恒型差分格式的Lax-Wendroff定理: 如果守恒型差分格式是和守恒律相容的,且當(dāng)時(shí)間和空間步長(zhǎng)趨于零時(shí),差分解一致有界,幾乎處處收斂于分片連續(xù)可微的函數(shù),則這個(gè)收斂的函數(shù)就是守恒律的一個(gè)弱解。推論:守恒型差分各式的收斂解能自動(dòng)滿足間斷關(guān)系。 用途: (加上熵條件)可以得到正確的激波,研究中大量使用例如:Lax-Friedrichs 格式,Lax-Wendroff格式,Mac
8、Cormack格式 0)(xuftunjnjnjnjffxtuu212111143.1.6 偏微分方程的全離散方法 對(duì)差分格式的一般要求: 有精度、格式穩(wěn)定、求解效率高 特殊要求 物理定律(守恒性)、物理特征(激波、湍流、旋渦、多介質(zhì)、化學(xué)反應(yīng)等)、有界性(正密度、正溫度、正湍動(dòng)能、正組分濃度等) 主要指非定常方程的時(shí)間離散 153.1.6偏微分方程的全離散方法(續(xù)) 兩層格式 Crank-Nicolson格式、P-C格式、Lax-Wendroff格式、MacCormack 格式 Runge-Kutta方法 時(shí)空全守恒:如Godunov格式、central-upwind格式、CESE方法 多層
9、格式 Leap-Frog格式、Adams-Bashforth格式、后三點(diǎn)隱格式 163.1.6.1 兩層格式 Crank-Nicolson格式 Predictor-Corrector格式 Lax-Wendroff 格式 Mac Cormack格式 Runge-Kutta方法stable nalunconditio)(4440)(40)(2011111111111111111nnninininininininininininininnniniBAuBuuuuuuuuuuxctuuxuxuctuuxuctu173.1.6.1 兩層格式(cont.) Lax-Wendroff 格式一步LW格式xtc
10、xtOuuuuuuuxuctuninininininini其中),( ),2(2)(202211211111) 1(cossin1)2(2)(21:2121GxkxkiAAGeeeeAAFouriernnxikxikxikxiknn穩(wěn)定性183.1.6.1 兩層格式(cont.) Lax-Wendroff 格式兩步LW格式常系數(shù)Jacobian時(shí)與單步LW等價(jià)。但計(jì)算更簡(jiǎn)單,不涉及矩陣相乘。1 ),( , 0)(10)(12/2/ )(022212121211112121xtOffxtuuffxtuuuxftuninininininininini193.1.6.1 兩層格式(cont.) Ma
11、c Cormack 格式 (1969)兩步格式比LW更簡(jiǎn)單,不需要計(jì)算函數(shù)在半點(diǎn)上的值。LW兩步格式和MC各式的缺點(diǎn):定常解的誤差依賴(lài)于時(shí)間步長(zhǎng)。1 ),(0)(1)(21:0)(1:022*1*11*xtcxtOffxtuuuCffxtuuPxftuiiinininininii20Mac Cormack格式的構(gòu)造)(1)(1)(21)()(exp.Taylor )(210:0:0*1*1*1*1*1*1*iinininnavavnininniinininFFxtUFFxtUtUtUtUttUUUUUUxFFtUUCxFFtUUPxFtU213.1.6.2 三層格式 Leap-Frog格式 A
12、dams-Bashforth格式)()()()(12)()()(2)()(2)(3123232221tOtOufufttuftutOufttuftutOtuttutuuuftunnnnnnnnn)()(21)(23211tOufuftuunnnn22第二課后閱讀提示 傅德薰計(jì)算流體力學(xué),3.1 3.3 水鴻壽一維流體力學(xué)數(shù)值方法3.1 Computational Methods for Fluid Dynamics, Ferziger and Peric, Springer Chap. 623作業(yè)2 1.用Fourier法分析 3.1.6.1節(jié)中Crank-Nicolson格式的穩(wěn)定性。 2.
13、分析前面3.1.6節(jié)中Mac Cormack格式是幾階精度。243.2有限體積法 出發(fā)方程為積分型守恒方程(直角坐標(biāo)、柱坐標(biāo)、球坐標(biāo)) 以控制體為離散量 計(jì)算體積分和面積分需要適當(dāng)?shù)牟逯倒胶头e分公式 (quadrature formula) 適用于任意形狀的網(wǎng)格,復(fù)雜幾何形狀 缺點(diǎn):難以構(gòu)造大于二階以上的格式253.2.1 定常守恒型方程和控制體dqdsdsSSnnvgrad263.2.2 面積分的逼近 面積分用積分點(diǎn)的值表示(quadrature) 積分點(diǎn)的值用CV的值表示(interpolation) 對(duì)于Simpson公式,對(duì)積分點(diǎn)的插值需要四階精度eSseeneeSeeeSkSSff
14、ffdSSfSffdSfdSfdSeek461:order4th :order-2nd273.2.4 體積分的逼近 當(dāng)被積函數(shù)為某種型函數(shù)時(shí),可以得到精確的積分,逼近精度取決于型函數(shù)的精度。是精確的積分時(shí),為常值分布或線性分布幾何中心的值。為PPPPqqCVqqqqd :order-2nd283.2.4 體積分的逼近四階精度:2D直角坐標(biāo)網(wǎng)格最后一式可以四階精度逼近3D的面積分293.2.5 插值和微分 積分點(diǎn)的函數(shù)值和其法向梯度 1st UDS: 取上風(fēng)點(diǎn)的值eeeSudSeSnv30插值 2nd order: 向積分點(diǎn)線性插值 等價(jià)于中心差分 (CDS)31插值 當(dāng)積分點(diǎn)的函數(shù)是線性插值時(shí)
15、 Second order 32插值 QUICK (quadratic upwind interpolation for convective kinematics) 插值三階精度,但積分(差分)往往只有二階精度。33插值 高精度: N階精度的quadrture需要N-1階多項(xiàng)式插值公式。 界面上導(dǎo)數(shù)可以用插值公式的微分求出。343.2.5有限體積法的邊界條件 用邊界條件替代面積分 入口:通常給定對(duì)流通量 (mass, momentum, energy, etc.) 壁面和對(duì)稱(chēng)面:通量為零 邊界上函數(shù)值給定:和內(nèi)部CV的值共同構(gòu)建邊界上的導(dǎo)數(shù)35FV例子363.2.6 守恒律的有限體積方法 G
16、odunov 格式0),(),(0),(),(: t ,tx,xT0in 0)(21211212111nn1/2i1/2- idttxufdxtxudtdxtxufxdxdttxutuftuiinniinnxxttxxtt或積分在,37問(wèn)題的精確解給出。的值是由其中得Riemann),(),(1),(12/121212121112121txudttxuftgdxtxuxuggxtuuittiixxnniiinininnii383.2.6.1 Godunov方法的思想.),( Riemann,),; 0(),(Riemann,Riemann,. ,111 2121121121 2121ninni
17、iinnnRPRLRPiniRinLiinintxxxtxttttttxxxxxxxxtiuuuuuuuuuuuuuu離散分布時(shí)刻的的就構(gòu)成下一輪循環(huán)所需得到的平均值內(nèi)進(jìn)行平均,在每個(gè)小網(wǎng)格區(qū)間精確解在下一時(shí)刻的值都互不干擾,這樣可將,的精確解問(wèn)題相鄰的局部使得每個(gè)小網(wǎng)格內(nèi)來(lái)自取問(wèn)題的精確解并求出該問(wèn)題的考慮初始間斷為內(nèi)的常數(shù)分布小網(wǎng)格區(qū)間看成是時(shí)刻的離散分布量把已知的39一階迎風(fēng)格式(CIR格式) 0 xuatu40用Godunov思想說(shuō)明CIR格式=Godunov格式410 ),(11auutaxuxunininini42Riemann解圖示43443.2.6.1 1D Euler方程組的
18、Godunov格式0)(0)(00)()(0)()(0)(22dtpEuEdxdtpuudxudtdxxpEutExputuxut積分方程組微分方程組Godunov格式是基于積分形式的方程組,間斷關(guān)系自動(dòng)滿足,不需要另外考慮間斷線上的間斷關(guān)系45移動(dòng)網(wǎng)格上的積分回路11njx11njxnjx1njx1njx1njx12njxnjx21ntnt46移動(dòng)網(wǎng)格上的Godunov格式 求出。由狀態(tài)方程后,在求出),(,0)()()()(0)()()()(0)()()()(121121121111111121211111211211111112121111121121111121111121epppEupuDuEpuDuEtxxExxEpDuupDuutxxuxxuDuDutxxxxnjnjnjjjjjjjjjjjjjnjnjnjnjnjnjnjnjjjjjjjjjjjnjnjnjn
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國(guó)除草劑市場(chǎng)運(yùn)營(yíng)狀況發(fā)展趨勢(shì)分析報(bào)告
- 2025-2030年中國(guó)鋯英砂行業(yè)供需現(xiàn)狀及投資發(fā)展規(guī)劃研究報(bào)告
- 2025-2030年中國(guó)連接器制造市場(chǎng)發(fā)展動(dòng)態(tài)及前景趨勢(shì)預(yù)測(cè)報(bào)告
- 2025-2030年中國(guó)輪滑鞋行業(yè)發(fā)展現(xiàn)狀及前景趨勢(shì)分析報(bào)告
- 2025-2030年中國(guó)血漿增容劑行業(yè)運(yùn)行動(dòng)態(tài)與發(fā)展風(fēng)險(xiǎn)評(píng)估報(bào)告
- 2025-2030年中國(guó)葵花油市場(chǎng)運(yùn)行態(tài)勢(shì)及發(fā)展盈利分析報(bào)告
- 2025-2030年中國(guó)藝術(shù)玻璃行業(yè)市場(chǎng)運(yùn)行態(tài)勢(shì)及投資戰(zhàn)略研究報(bào)告
- 2025-2030年中國(guó)管道檢測(cè)行業(yè)供需現(xiàn)狀及投資發(fā)展規(guī)劃研究報(bào)告
- 2025-2030年中國(guó)空冷器市場(chǎng)運(yùn)行現(xiàn)狀及發(fā)展策略分析報(bào)告
- 2025-2030年中國(guó)種衣劑市場(chǎng)運(yùn)營(yíng)狀況及發(fā)展趨勢(shì)研究報(bào)告
- 中醫(yī)24節(jié)氣課件
- 《化工安全技術(shù)》教學(xué)設(shè)計(jì)(教學(xué)教案)
- 環(huán)衛(wèi)應(yīng)急預(yù)案8篇
- 《與顧客溝通的技巧》課件
- DB14-T2980-2024低品位鋁土礦資源綜合利用技術(shù)規(guī)范
- 2024小學(xué)語(yǔ)文新教材培訓(xùn):一年級(jí)語(yǔ)文教材的修訂思路和主要變化
- 上消化道異物的內(nèi)鏡處理
- 健康教育學(xué)全套課件完整版
- 2024年遼寧省中考語(yǔ)文真題含解析
- 農(nóng)產(chǎn)品食品檢驗(yàn)員二級(jí)技師技能理論考試題含答案
- 《財(cái)政學(xué)》財(cái)政及經(jīng)管類(lèi)專(zhuān)業(yè)全套教學(xué)課件
評(píng)論
0/150
提交評(píng)論