高中數(shù)學(xué)-3.1.3二倍角的正弦、余弦、正切公式課件-新人教a版必修4word版本_第1頁
高中數(shù)學(xué)-3.1.3二倍角的正弦、余弦、正切公式課件-新人教a版必修4word版本_第2頁
高中數(shù)學(xué)-3.1.3二倍角的正弦、余弦、正切公式課件-新人教a版必修4word版本_第3頁
高中數(shù)學(xué)-3.1.3二倍角的正弦、余弦、正切公式課件-新人教a版必修4word版本_第4頁
高中數(shù)學(xué)-3.1.3二倍角的正弦、余弦、正切公式課件-新人教a版必修4word版本_第5頁
已閱讀5頁,還剩27頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、湖南省長沙市一中衛(wèi)星遠(yuǎn)程學(xué)校高中數(shù)學(xué)-3.1.3二倍角的正弦、余弦、正切公式課件-新人教A版必修4復(fù)習(xí)引入復(fù)習(xí)引入基本公式:基本公式: sincoscossin)sin( 復(fù)習(xí)引入復(fù)習(xí)引入基本公式:基本公式: sincoscossin)sin( sincoscossin)sin( 復(fù)習(xí)引入復(fù)習(xí)引入基本公式:基本公式: sinsincoscos)cos( sincoscossin)sin( sincoscossin)sin( 復(fù)習(xí)引入復(fù)習(xí)引入基本公式:基本公式: sinsincoscos)cos( sincoscossin)sin( sincoscossin)sin( sinsincoscos)

2、cos( 復(fù)習(xí)引入復(fù)習(xí)引入基本公式:基本公式: tantan1tantan)tan(復(fù)習(xí)引入復(fù)習(xí)引入基本公式:基本公式: tantan1tantan)tan( tantan1tantan)tan( 練習(xí):練習(xí): 在在ABC中,中,sinAsinBcosAcosB, 則則ABC為為 ( )A直角三角形直角三角形 B鈍角三角形鈍角三角形 C銳角三角形銳角三角形 D等腰三角形等腰三角形練習(xí):練習(xí):)(12sin12cos3. 2的的值值為為 2D.2C.2B.0A. 講授新課講授新課思考:思考:.2sin,53)sin(,1312)cos( ,432 求求已已知知 講授新課講授新課思考:思考: 由此

3、我們能否得到由此我們能否得到sin2 ,cos2 ,tan2 的公式呢?的公式呢?.2sin,53)sin(,1312)cos( ,432 求求已已知知 公式推導(dǎo):公式推導(dǎo):)sin(2sin 公式推導(dǎo):公式推導(dǎo):)sin(2sin sincoscossin 公式推導(dǎo):公式推導(dǎo):)sin(2sin cossin2 sincoscossin 公式推導(dǎo):公式推導(dǎo):)sin(2sin cossin2 sincoscossin )cos(2cos 公式推導(dǎo):公式推導(dǎo):)sin(2sin cossin2 sincoscossin )cos(2cos sinsincoscos 公式推導(dǎo):公式推導(dǎo):)sin

4、(2sin cossin2 sincoscossin )cos(2cos 22sincos sinsincoscos 思考:思考: 把上述關(guān)于把上述關(guān)于cos2 的式子能否變成的式子能否變成只含有只含有sin 或或cos 形式的式子呢?形式的式子呢? 22sincos2cos 思考:思考: 2sin212cos 把上述關(guān)于把上述關(guān)于cos2 的式子能否變成的式子能否變成只含有只含有sin 或或cos 形式的式子呢?形式的式子呢? 22sincos2cos 思考:思考:1cos22cos2 把上述關(guān)于把上述關(guān)于cos2 的式子能否變成的式子能否變成只含有只含有sin 或或cos 形式的式子呢?形

5、式的式子呢? 22sincos2cos 2sin212cos 公式推導(dǎo):公式推導(dǎo):)tan(2tan 公式推導(dǎo):公式推導(dǎo):)tan(2tan tantan1tantan 公式推導(dǎo):公式推導(dǎo):)tan(2tan 2tan1tan2 tantan1tantan 公式推導(dǎo):公式推導(dǎo):)tan(2tan 2tan1tan2 tantan1tantan 注意:注意:)(2,22Zkkk .4tan,4cos,4sin,24,1352sin的的值值求求已已知知 例例1.講解范例:講解范例:.)22tan(, 2tan,54cos 的的值值求求BABA 例例2. 在在ABC中中,講解范例:講解范例:.tan

6、,312tan的的值值求求已已知知 例例3. 講解范例:講解范例:.)2tan(,31tan,71tan的的值值求求已已知知 例例4. 講解范例:講解范例:.)2tan(,31tan,71tan的的值值求求已已知知 例例4. 講解范例:講解范例:練習(xí)練習(xí).教材教材P.135練習(xí)練習(xí)第第1、2、3、4、5題題. 課堂小結(jié)課堂小結(jié) 本節(jié)我們學(xué)習(xí)了二倍角的正弦、本節(jié)我們學(xué)習(xí)了二倍角的正弦、余弦和正切公式,我們要熟記公式,余弦和正切公式,我們要熟記公式,在解題過程中要善于發(fā)現(xiàn)規(guī)律,學(xué)在解題過程中要善于發(fā)現(xiàn)規(guī)律,學(xué)會靈活運用會靈活運用. 閱讀教材閱讀教材P.132到到P.134; 2. P138-14,15,16

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論