鏡像法在電磁場(chǎng)中的應(yīng)用_第1頁(yè)
鏡像法在電磁場(chǎng)中的應(yīng)用_第2頁(yè)
鏡像法在電磁場(chǎng)中的應(yīng)用_第3頁(yè)
鏡像法在電磁場(chǎng)中的應(yīng)用_第4頁(yè)
鏡像法在電磁場(chǎng)中的應(yīng)用_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、摘要若在某區(qū)域內(nèi)有一點(diǎn)電荷,并且邊界的形狀比較有規(guī)則,求解這一點(diǎn)電荷所激發(fā)的電場(chǎng)分布。鏡像法即為其中的一種方法,它將在邊界所激發(fā)的電荷用一個(gè)或者多個(gè)的象電荷等效的替換,將復(fù)雜的邊界問(wèn)題轉(zhuǎn)化為幾個(gè)電荷共同作用產(chǎn)生場(chǎng)的迭加問(wèn)題,即利用電勢(shì)的迭加原理求解電場(chǎng)。并將此推廣到磁場(chǎng)中時(shí),即可以將場(chǎng)的復(fù)雜問(wèn)題轉(zhuǎn)化為幾個(gè)電流共同作用產(chǎn)生場(chǎng)的問(wèn)題。關(guān)鍵詞:鏡像法;邊值條件;靜電場(chǎng);電勢(shì)疊加;軸對(duì)稱非靜態(tài)場(chǎng)AbstractIf there is one point of a region of charge,and relatively simple shape of the border, we can sol

2、ve this point to charge the electric field distribution excited image method is a method in which inspired at the border with the charge as an equivalent replacement charge will be the complexity of border issues into the combined effect of several charges arising from the issue of field superpositi

3、on.And this extended to the magnetic field when the field can be transformed into the complex issues of a common role in several current market.Keywords:mirror-image method ;boundary conditions;electrostatic field; potential overlapping; Axisymmetric non-static field目 錄摘要 Abstract緒論1第一章 利用鏡像法的解題步驟21

4、.1鏡像法及其理論基礎(chǔ)21.2鏡像法的解題步驟21.3鏡像法的適用條件2第二章 鏡像法在靜態(tài)場(chǎng)中的應(yīng)用32.1鏡像法在靜態(tài)電場(chǎng)中的應(yīng)用32.2鏡像法在靜態(tài)磁場(chǎng)中的應(yīng)用82.3本章小結(jié)11第三章 鏡像法在非靜態(tài)場(chǎng)中的應(yīng)用133.1非靜態(tài)電磁場(chǎng)133.2利用鏡像法解非靜態(tài)電磁183.3本章小結(jié)19結(jié)束語(yǔ)20致謝21參考文獻(xiàn)22緒論在1848年,W.湯姆孫提出用于計(jì)算一定形狀導(dǎo)體面附近的電荷所產(chǎn)生的靜電場(chǎng)的一種方法,并將此稱為電像法1。后來(lái)發(fā)展到計(jì)算某些靜磁場(chǎng)的問(wèn)題,稱為磁像法。無(wú)論是電像法還是磁像法它們均為鏡像法。鏡像法是電動(dòng)力學(xué)中一種重要的計(jì)算方法.許多復(fù)雜問(wèn)題使用該方法求解都會(huì)很簡(jiǎn)便,如在各種

5、電動(dòng)力學(xué)教材教科書中都介紹了利用鏡像法求解均勻介質(zhì)界面,介質(zhì)柱面,介質(zhì)球面在靜態(tài)外場(chǎng)中電場(chǎng)分布情況2-4。也從中我們得到了靜像法的基本解題思路5:如果在原電荷產(chǎn)生的電場(chǎng)中存在著導(dǎo)體或者介質(zhì)分界面,導(dǎo)體或者介質(zhì)面則由于靜電感應(yīng)或極化作用將出現(xiàn)感應(yīng)或極化電荷。若直接求解這區(qū)域的之內(nèi)的場(chǎng)會(huì)較復(fù)雜,但若我們可以將導(dǎo)體或介質(zhì)上的感應(yīng)或極化電荷在求解區(qū)域的影響用求解區(qū)域外的假想的電荷代替,但并不改變?cè)瓉?lái)問(wèn)題的邊界條件,則原來(lái)求解原電荷與感應(yīng)或極化電荷在求解區(qū)域的問(wèn)題變成了求解元電荷與感應(yīng)電荷在求解區(qū)域的問(wèn)題。這種方法就稱為鏡像法,假想電荷稱為象電荷。目前,鏡像法已不限于靜電學(xué)范圍,它已應(yīng)用于計(jì)算穩(wěn)恒磁場(chǎng),

6、穩(wěn)恒電流場(chǎng)和天線的輻射場(chǎng)等不少重要的電磁場(chǎng)問(wèn)題。這種方法物理意義明顯,可使某些問(wèn)題的求解大為簡(jiǎn)化在有點(diǎn)電荷和金屬介質(zhì)的情況下常能湊效。但是關(guān)于鏡像法在求解靜磁場(chǎng)中的應(yīng)用卻少人提及,全面透徹地?cái)⑹龈鼮樯僖?。的確,鏡像法在靜磁場(chǎng)中求解比用于求解靜電場(chǎng)要難多。但是只要抓住方法實(shí)質(zhì),抓住靜電場(chǎng)和靜磁場(chǎng)的可比性,則可使鏡像法用于求解靜磁的問(wèn)題大為簡(jiǎn)化。由此推及,討論鏡像法在非靜態(tài)電磁場(chǎng)中的應(yīng)用是很有意義。迄今為止,在教學(xué)中還鮮有人將鏡像法應(yīng)用到解非靜態(tài)問(wèn)題場(chǎng),而在下面筆者將根據(jù)鏡像法在靜態(tài)場(chǎng)的應(yīng)用經(jīng)驗(yàn)上,應(yīng)用場(chǎng)的邊值問(wèn)題和疊加原理,討論一下鏡像法在非靜態(tài)場(chǎng)中的應(yīng)用。第一章 利用鏡像法的解題步驟若點(diǎn)電荷附

7、近有一導(dǎo)體,在點(diǎn)電荷的電場(chǎng)作用下,導(dǎo)體面上出現(xiàn)感應(yīng)電荷,我們希望求出導(dǎo)體外面空間的電場(chǎng),這電場(chǎng)包括點(diǎn)電荷激發(fā)的電場(chǎng)和導(dǎo)體表面感應(yīng)電荷所激發(fā)的電場(chǎng),我們?cè)O(shè)想,導(dǎo)體面上的感應(yīng)電荷對(duì)空間中電場(chǎng)的影響能否用導(dǎo)體內(nèi)部某個(gè)或幾個(gè)假想電荷來(lái)代替?注意我們?cè)谧鬟@種代換時(shí)并不能改變空間中的電荷分布(在求解電場(chǎng)的區(qū)域,即導(dǎo)體外部空間中仍然只有一個(gè)點(diǎn)電荷),因而并不能影響泊松方程,問(wèn)題是關(guān)鍵在于是否滿足邊界條件。如果用這種代換確實(shí)能夠滿足邊界條件,則我們所設(shè)想是假想電荷就可以用來(lái)代替導(dǎo)體表面的感應(yīng)電荷分布,從而問(wèn)題的解可以簡(jiǎn)單的表示出來(lái)。由鏡像法求解靜態(tài)場(chǎng)問(wèn)題中,我們可以看出場(chǎng)的唯一性定理是解鏡像法的基礎(chǔ),在從中應(yīng)

8、用唯一性定理,解決場(chǎng)的邊值問(wèn)題6-7,而在求解過(guò)程中我們也常用到理想模型和疊加原理。(1) 場(chǎng)的唯一性定理是鏡像法的基本前提;(2) 所求區(qū)域有少數(shù)幾個(gè)或一個(gè)點(diǎn)電荷,它所產(chǎn)生的感應(yīng)電荷一般可以用假想電荷代替,且不改變?cè)臻g電荷分布;(3) 導(dǎo)體或者介質(zhì)的邊界形狀比較規(guī)則(球面,平面,圓柱面),具有一定的對(duì)稱性;(4) 邊界條件給定;(5) 主要應(yīng)用疊加定理。1.2鏡像法的解題步驟 第一寫出微分方程和給定邊界條件;第二根據(jù)給定的邊界條件計(jì)算象電荷的電量和所在位置;第三 根據(jù)電勢(shì)疊加得出電勢(shì)的解析形式;第四求解電場(chǎng),電荷分布等。第二章 鏡像法在靜態(tài)場(chǎng)中的應(yīng)用2.1 鏡像法在靜電場(chǎng)中的應(yīng)用鏡像法是用

9、假想電荷等效的代替導(dǎo)體(介質(zhì))邊界面上的面電荷分布,然后用空間點(diǎn)電荷迭加得出空間的電勢(shì)分布,我們稱這樣的方法加做電像法。假想電荷稱為象電荷,它要求象電荷的出現(xiàn)不改變?cè)臻g的電荷分布。界面為平面1,6例1:由兩電介率分別為和的均勻介質(zhì)分占上下兩半空間,以無(wú)限平面為分界面,在介質(zhì)中距交界面處有一點(diǎn)電荷,求這兩種介質(zhì)中的靜電場(chǎng)。QQ1(b)Q(a)1112圖(3-1-1)解:當(dāng)求解區(qū)域?yàn)榻橘|(zhì)時(shí),在邊界之外設(shè)有一鏡像電荷,且整個(gè)空間區(qū)域充滿介質(zhì),則為和共同產(chǎn)生的。如圖(b)所示;當(dāng)求解區(qū)域時(shí)候,假設(shè)區(qū)域充滿介質(zhì),此時(shí)有和共同產(chǎn)生,在和的分界面上滿足邊界條件。所以,。 界面為柱面例2:半徑為的接地導(dǎo)體圓

10、柱外有一條和它平行的線電荷,密度為,與圓柱的軸相距為,求鏡像電荷的大小和位置。QyMa0xbbd圖(3-1-2)分析:用位于圓柱導(dǎo)體內(nèi),距圓柱軸線處的鏡像電荷,代替導(dǎo)體柱面的感應(yīng)電荷,邊界條件維持不變,即導(dǎo)體圓柱面為零電位面,去掉導(dǎo)體圓柱,原線電荷和鏡像線電荷求解導(dǎo)體圓柱外區(qū)域場(chǎng),注意不能用原電荷和鏡像電荷求解導(dǎo)體圓柱內(nèi)區(qū)域場(chǎng)。解:我們用的關(guān)系進(jìn)行試探求解。用同樣在圓周上兩點(diǎn)(通過(guò)鏡像電荷的直徑的兩個(gè)端點(diǎn)),因圓柱接地,它們的點(diǎn)位必須為零即, 。代入的關(guān)系后,上面兩方程解得求解電位得圓柱體外任一點(diǎn)的電位為,其中,分別為,到場(chǎng)點(diǎn)的距離。討論:若圓柱體不接地時(shí),則導(dǎo)體圓柱面不在為零電位面,此時(shí)其邊

11、界條件為常數(shù),即=常數(shù)。 界面為球面1,7例3:在半徑為的接地導(dǎo)體球面外,距球心為處()有一點(diǎn)電荷,求解球外任意一點(diǎn)的電位。圖(3-1-3)解:假設(shè)可以用球內(nèi)一假想電荷來(lái)代替球面的感應(yīng)電荷對(duì)空間電場(chǎng)的作用,由于對(duì)稱性,應(yīng)在的連線上,關(guān)鍵是能否選擇的大小和位置使得球面上的條件得到滿足考慮球面上任意一點(diǎn),如圖(3-1-3)所示,邊界條件要求(為到的距離,為到距離)若選擇的的位置使則=常數(shù)設(shè)的位置距球心的距離為,則三角形相似的條件為由上兩式子確定了假想電荷的位置和大小。由和所激發(fā)的總電場(chǎng)能夠滿足在導(dǎo)體面上的邊界條件,所以是空間電場(chǎng)的正確解答,球外任意一點(diǎn)的電勢(shì)為式中到到的距離,為到的距離,為由球心到

12、點(diǎn)的距離,為與的夾角討論:(1)若球不接地,則邊界條件為常數(shù)a:導(dǎo)體不帶電,即邊界滿足電中性條件所以象電荷必須放在球心處,則b:導(dǎo)體帶電為,則滿足邊界條件為常數(shù)所以象電荷必須放在球心處,則(2)自由電荷在球內(nèi),即a0時(shí),設(shè)想全空間充滿均勻介質(zhì),其中只有兩條互相平行的長(zhǎng)直導(dǎo)線電流與,與對(duì)稱,但未知,為像電流,得(3-1)為的磁場(chǎng)方向的單位矢量,為的磁場(chǎng)方向的單位矢量當(dāng)Z0時(shí),設(shè)想全空間充滿均勻介質(zhì),其中只有兩條相互平行在同一位置的長(zhǎng)直導(dǎo)線電流與,未知,為像電流。而下半空間的磁場(chǎng)是由與產(chǎn)生的,(3-2)由兩半空間的磁場(chǎng)的邊值條件,在z=0的面上有可得將(3-1),(3-2)式代入上三式中有式中為平

13、面z上的與的夾角,及與的夾角,即解上方程組為故有式中為磁像電流到所求點(diǎn)的距離,為傳導(dǎo)電流到所求點(diǎn)的距離,在介質(zhì)圖中,像電流為與,在真空中,像電流變成為,。所以像電流的選取不是唯一的,但求得的磁感應(yīng)強(qiáng)度時(shí)是唯一的。線電流與介質(zhì)柱體系例2:設(shè)有磁導(dǎo)率為,半徑為的無(wú)限長(zhǎng)均勻直圓柱體,軸線沿軸,柱外距主軸處一與軸平行的線電流,求解磁場(chǎng)分布。xa0bIrdr圖(3-2-2)解:求柱外場(chǎng)時(shí),如圖(a)所示,假想全空間為,其中有三條長(zhǎng)直線電流,和-距軸分別為d,和0.求柱內(nèi)場(chǎng)時(shí),假想全空間為,如圖(b)所示,只有一條長(zhǎng)直線電流.距軸為d,則失勢(shì)為其中,。由邊值關(guān)系處,得,解上方程,得像電流求出后,根據(jù)磁場(chǎng)公

14、式求。2.3 本章小結(jié) 通過(guò)以上討論,將電像法與磁像法對(duì)照比較可看出,利用鏡像法都是根據(jù)的唯一性定理,在不改變場(chǎng)內(nèi)電流、電荷分布且滿足邊界條件的情況下,用場(chǎng)外的象電流或象電荷所產(chǎn)生的等效代替邊界面上的電流、電荷所產(chǎn)生的場(chǎng),將解靜場(chǎng)邊值問(wèn)題改為求解在無(wú)界空間中少數(shù)幾個(gè)電流,電荷所產(chǎn)生的場(chǎng),從而簡(jiǎn)化求解過(guò)程,但這類方法只限于求解在形狀比較簡(jiǎn)單的邊界附近,有少數(shù)形狀比較簡(jiǎn)單的電流與電荷產(chǎn)生的場(chǎng)。除此以外,我們也從中可以看出像電流應(yīng)具有什么樣的形狀,原則上沒有任何限制,即對(duì)確定的元電荷不必要求像電荷有與之對(duì)應(yīng)的形式,對(duì)應(yīng)的個(gè)數(shù),對(duì)應(yīng)的大小,等等。只要像電流能等效的代替面電荷在求解區(qū)域內(nèi)的場(chǎng),又不改變?cè)?/p>

15、來(lái)邊界的條件即可,如元電荷是一個(gè)點(diǎn)電荷,像電荷可以是線,面,體電荷,也可以是多個(gè),還可以與元電荷量不等等等。綜上所述我們可以看出鏡像法的應(yīng)用與靜電場(chǎng)的情形,一般為簡(jiǎn)單對(duì)稱圖形。第三章 鏡像法在非靜態(tài)場(chǎng)的應(yīng)用我們知道變化的電場(chǎng)產(chǎn)生變化的磁場(chǎng),變化的磁場(chǎng)激發(fā)磁場(chǎng),所以首先討論含不穩(wěn)定電荷的對(duì)稱非靜態(tài)場(chǎng),含不穩(wěn)定電流源的對(duì)稱非靜態(tài)場(chǎng)12-15,再由改非靜態(tài)場(chǎng)的特點(diǎn),結(jié)合鏡像法的適用條討論鏡像法是否適用于非靜態(tài)場(chǎng)。那筆者猜想在滿足適用鏡像法的條件的情況下,將鏡像法推廣到軸對(duì)稱的非靜態(tài)場(chǎng)中,利用矢量迭加原理,得到軸外場(chǎng)強(qiáng)度。下面我們具體舉例討論:設(shè)在真空中有不穩(wěn)定對(duì)稱電流分布,如圖(4-1)所示,為高斯

16、面,閉合回路,由于磁場(chǎng)分布對(duì)稱性,任一方向由徑向場(chǎng)強(qiáng)分量變化而激發(fā)是電場(chǎng)都會(huì)被其他方向的徑向場(chǎng)強(qiáng)分量所產(chǎn)生的電場(chǎng)所抵消,所以只需要考慮軸向電場(chǎng)分量變化產(chǎn)生的電場(chǎng),沿著切向方向。,為切向的單位矢量。若高斯面上,下底面是半徑為,高為,則上下底面各點(diǎn)的軸向場(chǎng)強(qiáng)分布和徑向場(chǎng)強(qiáng)分量的大小可以分別表示、。磁感應(yīng)強(qiáng)度分別可以表示為和。高斯面?zhèn)让娓鼽c(diǎn)的軸向電場(chǎng)強(qiáng)度分量和徑向電場(chǎng)強(qiáng)度分量的大小可以表示為和;磁感應(yīng)強(qiáng)度為;軸向上的場(chǎng)量為;顯然對(duì)高斯面的上下底面只有軸向分量可以產(chǎn)生磁通量,對(duì)于側(cè)面只有徑向場(chǎng)強(qiáng)分量可以產(chǎn)生電通量。根據(jù),取閉合回路,根據(jù)取高斯面下底面,由有將軸線上的作為初值,代入上各式,進(jìn)行多級(jí)修正得

17、由上,我們可以看出在整個(gè)含不穩(wěn)定電流源的軸對(duì)稱非靜態(tài)場(chǎng)中只有軸向電場(chǎng)分量變化產(chǎn)生電場(chǎng),方向沿著切向方向。由含有不穩(wěn)定電流源的對(duì)稱非靜態(tài)場(chǎng)中產(chǎn)生的也只有軸向的電場(chǎng)強(qiáng)度,根據(jù)同樣的道理,當(dāng)平面半空間介質(zhì)與點(diǎn)電荷體系、點(diǎn)電荷與導(dǎo)體球體系等放入其中時(shí),我們也可以先求解出該場(chǎng)在靜態(tài)場(chǎng)中的電場(chǎng)強(qiáng)度,再與非靜態(tài)場(chǎng)所產(chǎn)生的進(jìn)行矢量的疊加,得到我們所求電磁場(chǎng)。 含不穩(wěn)定電荷源非靜態(tài)場(chǎng)的計(jì)算yx0z圖(3-2)如圖(3-2)所示,取為高斯面,閉合回路,,設(shè)在真空中有限區(qū)域內(nèi)存在軸對(duì)稱電荷分布,在區(qū)域中變化但總量不變,則任意一點(diǎn)的場(chǎng)強(qiáng)可表示為,其中和分別表示為軸向單位矢量和徑向單位矢量。這兩個(gè)方向的變化都會(huì)產(chǎn)生感應(yīng)

18、磁場(chǎng)都會(huì)被其他徑向場(chǎng)強(qiáng)分量變化產(chǎn)生的磁場(chǎng)沿著切線方向,表示為,為切向方向的單位矢量。若高斯面上下底面的半徑為r,高為,則上下底面各點(diǎn)軸向場(chǎng)強(qiáng)和徑向場(chǎng)強(qiáng)分量可以表示為、和,。磁感應(yīng)強(qiáng)度可以表示為和;高斯面?zhèn)让娓鼽c(diǎn)的軸向場(chǎng)強(qiáng)分量和徑向電場(chǎng)強(qiáng)度分量的大小可表示為和;磁感應(yīng)強(qiáng)度為;軸線上的場(chǎng)量為;,。顯然對(duì)于高斯面的上下底面積只有軸向場(chǎng)強(qiáng)分量可以產(chǎn)生電通量。對(duì)于側(cè)面則有徑向的場(chǎng)強(qiáng)分量可以產(chǎn)生電通量。根據(jù)高斯定理有取閉合回路,根據(jù)取高斯面下底面,由將軸線上的場(chǎng)強(qiáng)值作為的初值,由步積分、修正得由上可以看出在含不穩(wěn)定電荷源的軸對(duì)稱非靜態(tài)場(chǎng)中,只有軸向的變化的電場(chǎng)產(chǎn)生磁場(chǎng)。 本章小結(jié)本章主要討論了在滿足在區(qū)域

19、中含有一個(gè)或幾個(gè)電荷(電流),邊界形狀比較規(guī)則,且非靜態(tài)電流源或電荷源具有軸對(duì)稱性。也正是它們具有軸對(duì)稱性,使得它們產(chǎn)生的磁場(chǎng)或電場(chǎng)只有在切向方向,又因?yàn)閳?chǎng)為矢量,滿足疊加原理。所以在滿足鏡像法的使用條件下,在軸對(duì)稱的非靜態(tài)場(chǎng)的中,引入穩(wěn)定電流源,根據(jù)在第三章的結(jié)論中與(4.1)、(4.2)中的軸對(duì)稱的對(duì)應(yīng)場(chǎng)量疊加,從而得到我們的軸對(duì)稱的非靜態(tài)場(chǎng)分布。若我們加入一點(diǎn)電荷時(shí),它不僅僅受到附加場(chǎng)的影響,它還會(huì)受到感應(yīng)場(chǎng)的對(duì)其產(chǎn)生庫(kù)倫力和洛侖茲力的影響。所以在這樣的非靜態(tài)場(chǎng)中,鏡像法并不適用。若我們加入一穩(wěn)恒的線電流時(shí),且與源電流相垂直,這樣排除電流與電流間的安培力的影響。在作出這樣的假設(shè)及近似時(shí),

20、鏡像法可以適用。結(jié)束語(yǔ)我們利用鏡像法求解靜電場(chǎng)中的場(chǎng)分布時(shí),根據(jù)場(chǎng)的唯一性定理,在不改變?cè)妶?chǎng)分布的情況下,用一個(gè)或多個(gè)假想電荷等效的代替規(guī)則導(dǎo)體表面的感應(yīng)電荷分布,再利用邊界條件解出場(chǎng)的分布。此方法將復(fù)雜的邊界問(wèn)題簡(jiǎn)化為幾個(gè)電荷間的場(chǎng)的疊加問(wèn)題。由此類推,將鏡像法應(yīng)用到靜磁場(chǎng)中,通過(guò)第四章的討論,我們可以看出,磁像法與靜電場(chǎng)鏡像法有相似的地方,但也有更細(xì)致和困難的地方,更有不能相比較的地方(介質(zhì)中的場(chǎng))。所以討論這些問(wèn)題很有必要。磁像法討論了靜磁場(chǎng)B的唯一性定理及其應(yīng)用,同樣也是解靜磁場(chǎng)邊值問(wèn)題的方法15。應(yīng)用唯一性定理,對(duì)靜電磁場(chǎng)的邊值問(wèn)題采用各種不同的法求解,得出的結(jié)果都是相同的1,4,9。也在此基礎(chǔ)上,研究發(fā)現(xiàn)解導(dǎo)體表面比較規(guī)則(平面、球形、柱形)時(shí),將表面有無(wú)傳導(dǎo)面電流情況下的或?qū)w接地時(shí)的邊界條件寫出來(lái)時(shí)得到。當(dāng)然,用鏡像法求解時(shí),還要注意相關(guān)基本規(guī)律的成立。例如用鏡像法求解穩(wěn)恒磁場(chǎng)還應(yīng)保證安培環(huán)路定理的成立,所以在確定像電流的位置時(shí),不能將鏡像電流放在求解區(qū)16。同樣根據(jù)在第四章中對(duì)鏡像法在非靜態(tài)場(chǎng)中的應(yīng)用的討論,我們可以看出軸對(duì)稱的電流或電荷分布的產(chǎn)生的感應(yīng)場(chǎng)具有一定的方向性,在克服這方向場(chǎng)的影響,即假定其他方向的場(chǎng)為靜態(tài)的,將電荷或電流在靜態(tài)場(chǎng)中產(chǎn)生的場(chǎng)與非靜態(tài)場(chǎng)的場(chǎng)進(jìn)行場(chǎng)的矢量的迭加,從而得出軸對(duì)稱非靜態(tài)場(chǎng)的磁場(chǎng)或電場(chǎng)的分布。參考文獻(xiàn)1M.第二版.北

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論