下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、24.2 與圓有關(guān)的位置關(guān)系(第1課時) 教學(xué)目標(biāo) 1理解并掌握設(shè)O的半徑為r,點P到圓心的距離OP=d,則有:點P在圓外dr;點P在圓上d=r;點P在圓內(nèi)dr 點P在圓上d=r點P在圓內(nèi)dr 這個結(jié)論的出現(xiàn),對于我們今后解題、判定點P是否在圓外、圓上、圓內(nèi)提供了依據(jù) 下面,我們接下去研究確定圓的條件: 經(jīng)過一點可以作無數(shù)條直線,經(jīng)過二點只能作一條直線,那么,經(jīng)過一點能作幾個圓?經(jīng)過二點、三點呢?請同學(xué)們按下面要求作圓 (1)作圓,使該圓經(jīng)過已知點A,你能作出幾個這樣的圓? (2)作圓,使該圓經(jīng)過已知點A、B,你是如何做的?你能作出幾個這樣的圓?其圓心的分布有什么特點?與線段AB有什么關(guān)系?為
2、什么? (3)作圓,使該圓經(jīng)過已知點A、B、C三點(其中A、B、C三點不在同一直線上),你是如何做的?你能作出幾個這樣的圓? 小組演示:(1)無數(shù)多個圓,如圖1所示 (2)連結(jié)A、B,作AB的垂直平分線,則垂直平分線上的點到A、B的距離都相等,都滿足條件,作出無數(shù)個其圓心分布在AB的中垂線上,與線段AB互相垂直,如圖2所示 (1) (2) (3) (3)作法:連接AB、BC; 分別作線段AB、BC的中垂線DE和FG,DE與FG相交于點O;以O(shè)為圓心,以O(shè)A為半徑作圓,O就是所要求作的圓,如圖3所示在上面的作圖過程中,因為直線DE與FG只有一個交點O,并且點O到A、B、C三個點的距離相等(中垂線
3、上的任一點到兩邊的距離相等),所以經(jīng)過A、B、C三點可以作一個圓,并且只能作一個圓 即:不在同一直線上的三個點確定一個圓 也就是,經(jīng)過三角形的三個頂點可以做一個圓,這個圓叫做三角形的外接圓 外接圓的圓心是三角形三條邊垂直平分線的交點,叫做這個三角形的外心 下面我們來證明:經(jīng)過同一條直線上的三個點不能作出一個圓 證明:如圖,假設(shè)過同一直線L上的A、B、C三點可以作一個圓,設(shè)這個圓的圓心為P,那么點P既在線段AB的垂直平分線L1,又在線段BC的垂直平分線L2,即點P為L1與L2點,而L1L,L2L,這與我們以前所學(xué)的“過一點有且只有一條直線與已知直線垂直”矛盾所以,過同一直線上的三點不能作圓 上面
4、的證明方法與我們前面所學(xué)的證明方法思路不同,它不是直接從命題的已知得出結(jié)論,而是假設(shè)命題的結(jié)論不成立(即假設(shè)過同一直線上的三點可以作一個圓),由此經(jīng)過推理得出矛盾,由矛盾斷定所作假設(shè)不正確,從而得到命題成立這種證明方法叫做反證法 在某些情景下,反證法是很有效的證明方法 例1某地出土一明代殘破圓形瓷盤,如圖所示為復(fù)制該瓷盤確定其圓心和半徑,請在圖中用直尺和圓規(guī)畫出瓷盤的圓心 分析:圓心是一個點,一個點可以由兩條直線交點而成,因此,只要在殘缺的圓盤上任取兩條線段,作線段的中垂線,交點就是我們所求的圓心 作法:(1)在殘缺的圓盤上任取三點連結(jié)成兩條線段; (2)作兩線段的中垂線,相交于一點 則O就為
5、所求的圓心 三、 歸納總結(jié)第一課時作業(yè)設(shè)計 一、選擇題 1下列說法:三點確定一個圓;三角形有且只有一個外接圓;圓有且只有一個內(nèi)接三角形;三角形的外心是各邊垂直平分線的交點;三角形的外心到三角形三邊的距離相等;等腰三角形的外心一定在這個三角形內(nèi),其中正確的個數(shù)有( ) A1 B2 C3 D4 2如圖,RtABC,C=90,AC=3cm,BC=4cm,則它的外心與頂點C的距離為( )A2.5 B2.5cm C3cm D4cm 3如圖,ABC內(nèi)接于O,AB是直徑,BC=4,AC=3,CD平分ACB,則弦AD長為( ) A B C D3 二、填空題 1經(jīng)過一點P可以作_個圓;經(jīng)過兩點P、Q可以作_個圓,圓心在_上;經(jīng)過不在同一直線上的三個點可以作_個圓,圓心是_的交點 2邊長為a的等邊三角形外接圓半徑為_,圓心到邊的距離為_ 3直角三角形的外心是_的中點,銳角三角形外心在三角形_,鈍角三角形外心在三角形_ 三、綜合提高題1如圖,O是ABC的外接圓,D是AB上一點,連結(jié)BD,并延長至E,連結(jié)AD,若AB=AC,ADE=65,試求BOC的度數(shù)2如圖,通過防治“非典”,人們增強(qiáng)了衛(wèi)生意識,大街隨地亂扔生活垃圾的人少了,人們自覺地將生
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 重要物資采購合同
- 江西省萬載縣高中生物 專題2 細(xì)胞工程 2.2.2 動物細(xì)胞融合與單克隆抗體(練習(xí)課)教案 新人教版選修3
- 2024年三年級品社下冊《濃濃鄉(xiāng)土情》教案 山東版
- 高考化學(xué) 專題二 第8講 有機(jī)物的結(jié)構(gòu)、性質(zhì)和應(yīng)用教案(含解析)
- 2024秋九年級歷史上冊 第七單元 工業(yè)革命和工人運動的興起 第20課 第一次工業(yè)革命教案 新人教版
- 2023一年級數(shù)學(xué)上冊 二 比一比第1課時 比長短 比高矮教案 蘇教版
- 2024年春九年級化學(xué)下冊 第12單元 化學(xué)與生活 課題2 化學(xué)元素與人體健康教案 (新版)新人教版
- 文書模板-委托研發(fā)合同補充協(xié)議
- 年度部門評分表
- 混凝土澆筑課件
- 預(yù)防壓力性損傷安全風(fēng)險案例分析
- 遠(yuǎn)離黃賭毒學(xué)習(xí)教案
- 北京市平谷區(qū)多校2024-2025學(xué)年三年級上學(xué)期期中競賽數(shù)學(xué)試卷
- 影響健康因素多 課件 2024-2025學(xué)年人教版(2024)初中體育與健康七年級全一冊
- 大數(shù)據(jù)算法學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 幼兒園轉(zhuǎn)課協(xié)議書范文范本
- 2023年銀行反洗錢知識競賽題庫及答案(120題)
- 廣東省深圳市寶安區(qū)2024-2025學(xué)年三年級上學(xué)期月考數(shù)學(xué)試卷(10月份)
- 2024年貴州省都勻市事業(yè)單位招聘5人高頻難、易錯點500題模擬試題附帶答案詳解
- 人教版六年級上冊道德與法治知識點
- 與薊州區(qū)幼兒園結(jié)對幫扶協(xié)議書(2篇)
評論
0/150
提交評論