下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、統計復習回憶1.概率1主要包括古典概型、幾何概型、互斥事件的概率、相互獨立事件同時發(fā)生的概率。2互斥事件的概率加法公式:P(A + B)=P(A) + P(B),假設A與B為對立事件,那么P(A)=1-P(B) , 3 求古典概型的概率的根本步驟 :算出所有根本領件的個數; 求出事件A包含的根本領件個數; 代入 公式,求出P(A) ; (4)理解幾何概型與古典概型的區(qū)別,幾何概型的概率是幾何度量之比,主要使用面積之比與長度之比.等可能性事件的概率 P(A) m .n互斥事件A, B分別發(fā)生的概率的和P(A + B)=P(A) + P(B).n個互斥事件分別發(fā)生的概率的和P(A1 + A2+-+
2、 An)=P(A1) + P(A2) + P(An).獨立事件A, B同時發(fā)生的概率 P(A B)= P(A) P(B).n個獨立事件同時發(fā)生的概率P(A 1 A2 An)=P(A0 P(A2) P(A n).【例1】假設某公司從五位大學畢業(yè)生甲、乙、丙、丁、戌中錄用三人,這五人被錄用的時機均 等,那么甲或乙被錄用的概率為2(B)5(C)D10【答案】D【分析】車題考查古典ts型的概率間題,求解此類間題要求能夠準確確實定根本領件空間的根本領件個蹴 和所求事件所含的根本雪件個數-【解析】總的可能性有1D種,甲被錄用乙沒被錄用的可能性3種,乙被錄用甲沒破錄用的可能性3種,甲乙都被錄用的可能性3種,
3、所以最后的槻率聲三蘭汪=二W 10【觀律方法】概率韶分主要包括古與概型、幾何槪型、互斥條件的概率、條件槻率=相互獨立事件同時發(fā)生的概率等,竺些邯是高考考查的重點內容,坐煩熟練掌握.【例2】某小組共有 A, B, C, D, E五位同學,他們的身高(單位:米)及體重指標(單位:千克/米2)如下表所示:ABCDE身高體重指標(1)從該小組身上下于的同學中任選2人,求選到的2人身高都在以下的概率;【例3】某路口人行橫道的信號燈為紅燈和綠燈交替出現,紅燈持續(xù)時間為40秒.假設一名行人來到該路口遇到紅燈,那么至少需要等待15秒才出現綠燈的概率為7533A B5 C3D108810【答案】B【解析】因為紅
4、燈持續(xù)時間為 40秒.所以這名行人至少需要等待15秒才出現綠燈的概率為40 1540應選B.【例4】假設你家訂了一份牛奶,奶哥在早上6: 007: 00之間隨機地把牛奶送到你家,而你在早上6: 307: 30之間隨機第離家上學,那么你在理考家前能收到牛奶的概率是A.C.思路分析:幾何概型的會面問題,準確作圖利用面積作為幾何測度是解決問題的關鍵,設送報人 到達的時間為x,此人離家的時間為 y,以橫坐標表示報紙送到時間,以縱坐標表示此人離家時間,建立平面直角坐標系,根據其實際意義,轉化為集合概型,概率即為面積之比,作圖求面積 之比即可.【答案】D【解析】設送奶人到達的時間為 x,此人離家的時間為
5、y,以橫坐標表示奶送到時間,以縱坐標 表示此人離家時間,建立平面直角坐標系如圖那么此人離開家前能收到牛奶的事件構成區(qū)域如1117圖示,所以所求概率 P 1,應選D.2 2 2 8t j點評:對于幾何概型的概率公式中的“測度要有正確的認識,它只與大小有關,而與形狀和位置無關,在解題時,要掌握“測度為長度、面積、體積、角度等常見的幾何概型的求解方法.幾何概型中,事件A的概率計算公式:p A構成事件A的區(qū)域長度面積或體積冃試驗的全部結果所構成的區(qū)域長度面積或體積獨立性檢驗利用隨機變量L來確定在多大程度上可以認為兩個分類變量有關系的方法稱為兩個分類變量的獨立性檢驗。p K2>kk【例5】為了探究
6、患慢性氣管炎是否與吸煙有關,調查了 339名50歲以上的人,調查結果如下表所示:患病不患病合計吸煙43162205不吸煙13121134合計56283339試問:50歲以上的人患慢性氣管炎與吸煙習慣有關嗎?分析:最理想的解決方法是向所有 50歲以上的人作調查,然后對所得到的數據進行統計處理, 但這花費的代價太大,實際上是行不通的,339人相對于全體50歲以上的人,只是一個小局部,已學過總體和樣本的關系,當用樣本平均數,樣本方差去估計總體相應的數字特征時,由于抽樣 的隨機性,結果并不唯一?,F在情況類似,我們用局部對全體作推斷,推斷可能正確,也可能錯 誤。如果抽取的339個調查對象中很多人是吸煙但
7、沒患慢性氣管炎,而雖不吸煙因身體體質差而患慢性氣管炎,能夠得出什么結論呢?我們有 95%或99%丨的把握說事件一 與事件占 有關, 是指推斷犯錯誤的可能性為 5%或1%,這也常常說成是 以95%或99%的概率是一樣的。解:根據列聯表中的數據,得339x(43xl21-162xl3)2205x134x56x233= 7 469因為,所以我們有99%的把握說:50歲以上的人患慢性氣管炎與吸煙習慣有關?!纠?】甲乙兩個班級進行一門考試,按照學生考試成績優(yōu)秀和不優(yōu)秀統計成績后,得到如下的 列聯表:班級與成績列聯表優(yōu)秀不優(yōu)秀總計甲班103545乙班73845總計177390利用列聯表的獨立性檢驗估計,認
8、為成績與班級有關系犯錯誤的概率是多少解:由表中數據計算得 K2的觀察值為。由下表中數據PK2>kIK1得:PK2,從而有50%的把握認為 成績與班級有關系 即斷言 成績優(yōu)秀與班級有關系 犯錯誤的概率為。【例7】在一次惡劣氣候的飛行航程中調查男女乘客在機上暈機的情況如下表所示,根據此資料 你是否認為在惡劣氣候中男人比女人更容易暈機?暈機不暈機合計男人243155女人82634合計325789分析:這是一個:列聯表的獨立性檢驗問題,根據列聯表的數據求解。解:由條件中數據,計算得:因為 f二1 ° 1,所以我們沒有理由說暈機是否跟男女性別有關,盡管這次航班中男人暈機廣24 8的比例1
9、了了丿比女人暈機的比例 丿高,但我們不能認為在惡劣的氣候飛行中男人比女人更 容易暈機。【練習】某工廠有 25周歲以上含25周歲工人300名,25周歲以下工人200名.為研究工人的 日平均生產量是否與年齡有關,現采用分層抽樣的方法,從中抽取了100名工人,先統計了他們某月的日平均生產件數,然后按工人年齡在“25周歲以上洽25周歲和“ 25周歲以下分為兩組,再將兩組工人的日平均生產件數分成5組:50,60、60,70、70,80、80,90、90,100分別加以統計,得到如下列圖的頻率分布直方圖.23周歲以上ai從樣本中日平均生產件數缺乏 60件的工人中隨機抽取 2人,求至少抽到一名“25周歲以下
10、組 工人的概率;(2)規(guī)定日平均生產件數不少于80件者為“生產能手,請你根據條件完成2X 2列聯表,并判斷是否有90%的把握認為“生產能手與工人所在的年齡組有關?2附:2 n niin22 ni2n2ini + n2+ n+in+ 2P( 2> k)k回歸分析兩個變量間的相關關系:有關概念:相關關系與函數關系不同.函數關系中的兩個變量間是一種確定性關系.相關關系 是一種非確定性關系,即相關關系是非隨機變量與隨機變量之間的關系如果一個變量的值由小25周歲以下組變大時另一個變量的值由小變大,這種相關 稱為正相關;如果一個變量的值由小變大時 另一個變量的值由大變小,這種相關稱為負 相關;如果散
11、點圖中點的分布從整體上看大 致在一條直線附近,就稱這兩個變量之間具 有線性相關關系.回歸方程: y bx a是兩個具有線性相a、b關關系的變量的一組數據 (, yJ,(X2, y2), ,(xn, yn)的回歸方程,其中ab是待定參數.(x x)(yi y)x y nx yb的計算公式i 1i 1n(x x)2i 1nx2 n(x)2i 1a y bxnn2 .獨立性檢驗:2 X2列聯表構造一個隨機變量n 厲1門22R|2門21ni門2 n小2,利用隨機變量 X 2來判斷“兩個分類變量有關系BB合計Anun12n1+An21n22n2+總計n+1n+2n2的方法稱為獨立性檢驗:假設 23.84
12、1,那么有95%把握認為A與B有關;假設 26.635,那么有99%把握認為A與B有關;其中2 3.841是判斷是否有關系的臨界值,2 3.841應判斷為沒有充分證據顯示A與B有關,而不能作為小于 95%的量化值來判斷.【根本技能】1.必備技能:(%, yJ,(X2, y2),,(Xn, yn)的回歸方求回歸直線,使“離差平方和為最小的方法叫做最小二乘法,用最小二乘法求得回歸方程y bx a是兩個具有線性相關關系的變量的一組數據程,其中a、b是待定參數.從 ab與r的計算公式n_(X x)(y y)i 1n_(X x)2i 1nX yi nx yi 1n22與Xin(x)i 1a y bx(X
13、i x)(yi y)i 1Xiynxynx)2(yii 1y)2ni 12ny )可以看出:(i )回歸直線必過點 x, y ; ( ii) b與r符號相同。回歸【分析】是對具有相關關系的兩個變量進行統計分析的一種常用方法,主要判斷特定量之間是否有相關關系,如果有就找出它們之間貼近的數學表達式。比方線性回歸分析就是分析求出的回歸直線是否有意義,而判斷的依據就是| r|的大小:| r| < 1,并且| r|越接近1,線性相關程度越強;|r|越接近0,線性相關程度越弱。從散點圖來看,只有在散點圖大致呈線性時,求出的回 歸直線方程才有實際意義,否那么,求出的回歸直線方程毫無意義。線性相關檢驗的
14、步驟如下:(i )作統計假設:x與Y不具有線性相關關系;(i )根據小概率與n 2在附表中查出r的一個臨界值r0.05 ;iii根據樣本相關系數計算公式求出r的值;iv作統計推斷,如果|r|> r0.05,說明有95%勺把握認為x與Y之間具有線性相關關系;如果丨丨三r0.05,我們沒有理由拒絕原來的假設。這時尋找回歸直線方程是毫無意義的?!纠?】變量x和y滿足關系y 0.1x 1,變量y與z正相關.以下結論中正確的選項是 A x與y負相關,x與z負相關B. x與y正相關,x與z正相關C . x與y正相關,x與z負相關D. x與y負相關,x與z正相關【例9】根據如下樣本數據:x345678y4. 02. 50.50. 52.03.0得到的回歸方程為 ? bx a,那么A. a 0 , b 0 B . a 0 , b 0 C . a 0 , b 0 D . a 0 , b 0【例10】一次考試中,5名
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 循環(huán)經濟理念的年度落實計劃
- 四年級語文下冊 【分層作業(yè)】17《記金華的雙龍洞》課時練 提高篇(含答案)(部編版)
- 四年級語文下冊 期末調考模擬測試卷(一)(部編版)
- 成都中醫(yī)藥大學《藥物合成》2023-2024學年第一學期期末試卷
- 柳林風聲讀后感范文
- 幼兒園班級工作總結1000字(32篇)
- Keap1-Nrf2-IN-22-生命科學試劑-MCE
- Isorhynchophylline-Standard-生命科學試劑-MCE
- 健身俱樂部合作合伙協議書
- 住宅小區(qū)混凝土運輸合同
- 汶川地震波時程記錄(臥龍3向)
- 工貿企業(yè)有限空間作業(yè)安全指導手冊
- 5陶行知的學前教育思想課件(42頁PPT)
- 小學數學人教版一年級上冊數學看圖列式計算綜合訓練(帶答案)
- GB∕T 41496-2022 鐵合金 交貨批水分的測定 重量法
- 腫瘤《外科學總論》最新)
- 磷酸鐵鋰電池工商業(yè)儲能項目施工組織設計方案
- 婦科檢查(課堂PPT)
- (精心整理)自由落體運動 導學案
- 7壓力容器專業(yè)英語詞匯ASME常用詞匯
- CNAS-CC01:2015 管理體系認證機構要求
評論
0/150
提交評論