高中物理復(fù)合場專題復(fù)習(xí)(有界磁場)_第1頁
高中物理復(fù)合場專題復(fù)習(xí)(有界磁場)_第2頁
高中物理復(fù)合場專題復(fù)習(xí)(有界磁場)_第3頁
高中物理復(fù)合場專題復(fù)習(xí)(有界磁場)_第4頁
高中物理復(fù)合場專題復(fù)習(xí)(有界磁場)_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、習(xí)題課一 帶電粒子在勻強(qiáng)磁場中的運(yùn)動一、帶電粒子在直線邊界磁場中的運(yùn)動1.基本問題【例題1】如圖所示,一束電子(電量為e)以速度V垂直射入磁感應(yīng)強(qiáng)度為B、寬度為d的勻強(qiáng)磁場,穿透磁場時的速度與電子原來的入射方向的夾角為300.求:(1)電子的質(zhì)量m(2)電子在磁場中的運(yùn)動時間t【小結(jié)】處理帶電粒子在勻強(qiáng)磁場中的運(yùn)動的方法:1、 找圓心、畫軌跡(利用Fv或利用弦的中垂線);2、 定半徑(幾何法求半徑或向心力公式求半徑)3、 求時間(t=或t=)注意:帶電粒子在勻強(qiáng)磁場中的圓周運(yùn)動具有對稱性。 帶電粒子如果從一直線邊界進(jìn)入又從該邊界射出,則其軌跡關(guān)于入射點(diǎn)和出射點(diǎn)線段的中垂線對稱,入射速度方向、出

2、射速度方向與邊界的夾角相等; 在圓形磁場區(qū)域內(nèi),沿徑向射入的粒子,必沿徑向射出。2.應(yīng)用對稱性可以快速地確定運(yùn)動的軌跡?!纠}2】如圖所示,在y0的區(qū)域內(nèi)存在勻強(qiáng)磁場,磁場方向垂直于xy平面并指向紙面外,磁感應(yīng)強(qiáng)度為B.一帶正電的粒子以速度0從O點(diǎn)射入磁場,入射方向在xy平面內(nèi),與x軸正向的夾角為.若粒子射出磁場的位置與O點(diǎn)的距離為l,求該粒子的電量和質(zhì)量之比。 【審題】本題為一側(cè)有邊界的勻強(qiáng)磁場,粒子從一側(cè)射入,一定從邊界射出,只要根據(jù)對稱規(guī)律畫出軌跡,并應(yīng)用弦切角等于回旋角的一半,構(gòu)建直角三角形即可求解?!窘馕觥扛鶕?jù)帶電粒子在有界磁場的對稱性作出軌跡,如圖9-5所示,找出圓心A,向x軸作垂

3、線,垂足為H,由與幾何關(guān)系得: 帶電粒子在磁場中作圓周運(yùn)動,由 解得 聯(lián)立解得【總結(jié)】在應(yīng)用一些特殊規(guī)律解題時,一定要明確規(guī)律適用的條件,準(zhǔn)確地畫出軌跡是關(guān)鍵。二、帶電粒子在圓形邊界磁場中的運(yùn)動【例題3】電視機(jī)的顯像管中,電子(質(zhì)量為m,帶電量為e)束的偏轉(zhuǎn)是用磁偏轉(zhuǎn)技術(shù)實現(xiàn)的。電子束經(jīng)過電壓為U的加速電場后,進(jìn)入一圓形勻強(qiáng)磁場區(qū),如圖9-6所示,磁場方向垂直于圓面,磁場區(qū)的中心為O,半徑為r。當(dāng)不加磁場時,電子束將通過O點(diǎn)打到屏幕的中心M點(diǎn)。為了讓電子束射到屏幕邊緣P,需要加磁場,使電子束偏轉(zhuǎn)一已知角度,此時磁場的磁感強(qiáng)度B應(yīng)為多少?【審題】本題給定的磁場區(qū)域為圓形,粒子入射方向已知,則由對

4、稱性,出射方向一定沿徑向,而粒子出磁場后作勻速直線運(yùn)動,相當(dāng)于知道了出射方向,作入射方向和出射方向的垂線即可確定圓心,構(gòu)建出與磁場區(qū)域半徑r和軌跡半徑R有關(guān)的直角三角形即可求解?!窘馕觥咳鐖D9-7所示,電子在勻強(qiáng)磁場中做圓周運(yùn)動,圓周上的兩點(diǎn)a、b分別為進(jìn)入和射出的點(diǎn)。做a、b點(diǎn)速度的垂線,交點(diǎn)O1即為軌跡圓的圓心。設(shè)電子進(jìn)入磁場時的速度為v,對電子在電場中的運(yùn)動過程有:對電子在磁場中的運(yùn)動(設(shè)軌道半徑為R)有:由圖可知,偏轉(zhuǎn)角與r、R的關(guān)系為:聯(lián)立以上三式解得:【總結(jié)】本題為基本的帶電粒子在磁場中的運(yùn)動,題目中已知入射方向,出射方向要由粒子射出磁場后做勻速直線運(yùn)動打到P點(diǎn)判斷出,然后根據(jù)第一

5、種確定圓心的方法即可求解。三、帶電粒子在磁場中運(yùn)動的極值問題尋找產(chǎn)生極值的條件: 直徑是圓的最大弦; 同一圓中大弦對應(yīng)大的圓心角; 由軌跡確定半徑的極值。【例題4】如圖半徑r10cm的圓形區(qū)域內(nèi)有勻強(qiáng)磁場,其邊界跟y軸在坐標(biāo)原點(diǎn)O處相切;磁場B033T垂直于紙面向內(nèi),在O處有一放射源S可沿紙面向各個方向射出速率均為v=3.2106m/s的粒子;已知粒子質(zhì)量為m=6.610-27kg,電量q=3.210-19c,則粒子通過磁場空間的最大偏轉(zhuǎn)角及在磁場中運(yùn)動的最長時間t各多少?【審題】本題粒子速率一定,所以在磁場中圓周運(yùn)動半徑一定,由于粒子從點(diǎn)O進(jìn)入磁場的方向不同故其相應(yīng)的軌跡與出場位置均不同,則

6、粒子通過磁場的速度偏向角不同,要使粒子在運(yùn)動中通過磁場區(qū)域的偏轉(zhuǎn)角最大,則必使粒子在磁場中運(yùn)動經(jīng)過的弦長最大,因而圓形磁場區(qū)域的直徑即為粒子在磁場中運(yùn)動所經(jīng)過的最大弦,依此作出粒子的運(yùn)動軌跡進(jìn)行求解?!窘馕觥苛W釉趧驈?qiáng)磁場后作勻速圓周運(yùn)動的運(yùn)動半徑:粒子從點(diǎn)O入磁場而從點(diǎn)P出磁場的軌跡如圖圓O/所對應(yīng)的圓弧所示,該弧所對的圓心角即為最大偏轉(zhuǎn)角。由上面計算知SO/P必為等邊三角形,故60此過程中粒子在磁場中運(yùn)動的時間由即為粒子在磁場中運(yùn)動的最長時間?!究偨Y(jié)】當(dāng)速度一定時,弧長(或弦長)越長,圓周角越大,則帶電粒子在有界磁場中運(yùn)動的時間越長。四、帶電粒子在磁場中運(yùn)動的多解問題【例題5】長為L,間距

7、也為L的兩平行金屬板間有垂直向里的勻強(qiáng)磁場,如圖所示,磁感應(yīng)強(qiáng)度為B,今有質(zhì)量為m、帶電量為q的正離子從平行板左端中點(diǎn)以平行于金屬板的方向射入磁場。欲使離子不打在極板上,入射離子的速度大小應(yīng)滿足的條件是 ( )A. B. C. D.解析:由左手定則判得粒子在磁場中間向上偏,而作勻速圓周運(yùn)動,很明顯,圓周運(yùn)動的半徑大于某值r1時粒子可以從極板右邊穿出,而半徑小于某值r2時粒子可從極板的左邊穿出,現(xiàn)在問題歸結(jié)為求粒子能在右邊穿出時r的最小值r1以及粒子在左邊穿出時r的最大值r2,由幾何知識得:粒子擦著板從右邊穿出時,圓心在O點(diǎn),有:r12L2+(r1-L/2)2得r1=5L/4,又由于r1=mv1

8、/Bq得v1=5BqL/4m,v5BqL/4m時粒子能從右邊穿出。粒子擦著上板從左邊穿出時,圓心在O點(diǎn),有r2L/4,又由r2mv2/Bq=L/4得v2BqL/4mv2BqL/4m時粒子能從左邊穿出。答案:AB【總結(jié)】本題只問帶電粒子在洛倫茲力作用下飛出有界磁場時,由于粒子運(yùn)動軌跡是圓弧狀,因此,它可能穿過去了,也可能轉(zhuǎn)過180o從入射界面這邊反向飛出,于是形成多解,在解題時一定要考慮周全?!揪毩?xí)】如圖所示,足夠長的矩形區(qū)域abcd內(nèi)充滿磁感應(yīng)強(qiáng)度為B、方向垂直紙面向里的勻強(qiáng)磁場,現(xiàn)從ad邊的中心O點(diǎn)處,垂直磁場方向射入一速度為v0的帶正電粒子,v0與ad邊的夾角為30.已知粒子質(zhì)量為m,帶電

9、量為q,ad邊長為L,不計粒子的重力.(1)求要使粒子能從ab邊射出磁場,v0的大小范圍.(2)粒子在磁場中運(yùn)動的最長時間是多少?在這種情況下,粒子將從什么范圍射出磁場?習(xí)題課二 帶電粒子在復(fù)合場中的運(yùn)動一、帶電粒子在有界的相互分離的電場和磁場中運(yùn)動【例題1】如圖所示,在x軸上方有垂直于xy平面向里的勻強(qiáng)磁場,磁感應(yīng)強(qiáng)度為B;在x軸下方有沿y軸負(fù)方向的勻強(qiáng)電場,場強(qiáng)為E.一質(zhì)量為m,電量為-q的粒子從坐標(biāo)原點(diǎn)O沿著y軸正方向射出射出之后,第三次到達(dá)x軸時,它與點(diǎn)O的距離為L.求此粒子射出的速度v和在此過程中運(yùn)動的總路程s(重力不計).解析:由粒子在磁場中和電場中受力情況與粒子的速度可以判斷粒子

10、從O點(diǎn)開始在磁場中勻速率運(yùn)動半個圓周后進(jìn)入電場,做先減速后反向加速的勻變直線運(yùn)動,再進(jìn)入磁場,勻速率運(yùn)動半個圓周后又進(jìn)入電場,如此重復(fù)下去.粒子運(yùn)動路線如圖所示,有L=4R 粒子初速度為v,則有qvB=mv2/R ,由、可得v=qBL/4m .設(shè)粒子進(jìn)入電場做減速運(yùn)動的最大路程為L,加速度為a,則有v2=2aL , qE=ma, 粒子運(yùn)動的總路程s=2pR+2L. 由、式,得:s=pL/2+qB2L2/(16mE).【總結(jié)】把復(fù)雜的過程分解為幾個簡單的過程,按順序逐個求解,或?qū)⒚總€過程所滿足的規(guī)律公式寫出,結(jié)合關(guān)聯(lián)條件組成方程,再解方程組,這就是解決復(fù)雜過程的一般方法另外,還可通過開始n個過程

11、的分析找出一般規(guī)律,推測后來的過程,或?qū)φ麄€過程總體求解將此題中的電場和磁場的空間分布和時間進(jìn)程重組,便可理解回旋加速器原理?!揪毩?xí)】如圖所示,空間分布著有理想邊界的勻強(qiáng)電場和勻強(qiáng)磁場。左側(cè)勻強(qiáng)電場的場強(qiáng)大小為E、方向水平向右,電場寬度為L;中間區(qū)域勻強(qiáng)磁場的磁感應(yīng)強(qiáng)度大小為B,方向垂直紙面向里。一個質(zhì)量為m、電量為q、不計重力的帶正電的粒子從電場的左邊緣的O點(diǎn)由靜止開始運(yùn)動,穿過中間磁場區(qū)域進(jìn)入右側(cè)磁場區(qū)域后,又回到O點(diǎn),然后重復(fù)上述運(yùn)動過程。求:(1)中間磁場區(qū)域的寬度d;(2)帶電粒子從O點(diǎn)開始運(yùn)動到第一次回到O點(diǎn)所用時間t。【分析】:作出所有的圓弧,體現(xiàn)對稱性。標(biāo)出所有的圓心、半徑。利

12、用兩個圓的半徑相等的條件,不難看到,粒子在左邊磁場中的偏轉(zhuǎn)角度均為60,在右側(cè)磁場中的偏轉(zhuǎn)角度為300。這樣,題中所問的兩個問題就迎刃而解了。xyBEP0二、帶電粒子在相互疊加的電場和磁場中的運(yùn)動【例題】如圖所示,坐標(biāo)系xOy位于豎直平面內(nèi),在該區(qū)域內(nèi)有場強(qiáng)E=12N/C、方向沿x軸正方向的勻強(qiáng)電場和磁感應(yīng)強(qiáng)度大小為B=2T、沿水平方向且垂直于xOy平面指向紙里的勻強(qiáng)磁場一個質(zhì)量m=410kg,電量q=2.510C帶正電的微粒,在xOy平面內(nèi)做勻速直線運(yùn)動,運(yùn)動到原點(diǎn)O時,撤去磁場,經(jīng)一段時間后,帶電微粒運(yùn)動到了x軸上的P點(diǎn)取g=10 ms2,求:(1)微粒運(yùn)動到原點(diǎn)O時速度的大小和方向;(2)P點(diǎn)到原點(diǎn)O的距離;解析:(1)微粒運(yùn)動到O點(diǎn)之前要受到重力、電場力和洛倫茲力作用,在這段時間內(nèi)微粒做勻速直線運(yùn)動,說明三力合力為零由此可得xyBEPOF合vs2s1代入數(shù)據(jù)解得v=10m/s 速度v與重力和電場力的合力的方向垂直。設(shè)速度v與x軸的夾角為,則 代入數(shù)據(jù)得 ,即=37(2)微粒運(yùn)動到O點(diǎn)后,撤去磁場,微粒只受到重力、電場力作用,其合力為一恒力,且方向與微粒在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論