下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、第一章 三角形的證明3線段的垂直平分線(一) 宜昌市長江中學(xué) 李玉平 一、學(xué)生知識狀況分析學(xué)生對于掌握定理以及定理的證明并不存在多大得困難,這是因為在七年級學(xué)習(xí)生活中的軸對稱中學(xué)生已經(jīng)有了一定的基礎(chǔ)。二、教學(xué)任務(wù)分析在七年級學(xué)生已經(jīng)對線段的垂直平分線有了初步的認(rèn)識,本節(jié)課將進(jìn)一步深入探索線段垂直平分線的性質(zhì)和判定。同時,滲透證明一個圖形上的每個點都具有某種性質(zhì)的方法:只需在圖形上任取一點作為代表。本節(jié)課目標(biāo)位:1.證明線段垂直平分線的性質(zhì)定里和判定定理2經(jīng)歷探索、猜測、證明的過程,進(jìn)一步發(fā)展學(xué)生的推理證明能力豐富對幾何圖形的認(rèn)識。3.通過小組活動,學(xué)會與人合作,并能與他人交流思維的過程和結(jié)果教
2、學(xué)重點、難點重點是運用幾何符號語言證明垂直平分線的性質(zhì)定理及其逆命題。難點是垂直平分線的性質(zhì)定理在實際問題中的運用。三、教學(xué)過程分析本節(jié)課設(shè)計了七個教學(xué)環(huán)節(jié):第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課;第二環(huán)節(jié):性質(zhì)探索與證明;第三環(huán)節(jié):逆向思維,探索判定;第四環(huán)節(jié):鞏固應(yīng)用 ;第五環(huán)節(jié):隨堂練習(xí);第六環(huán)節(jié):課時小結(jié)第七環(huán)節(jié):課后作業(yè)。第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課教師用多媒體演示:如圖,A、B表示兩個倉庫,要在A、B一側(cè)的河岸邊建造一個碼頭,使它到兩個倉庫的距離相等,碼頭應(yīng)建在什么位置?其中“到兩個倉庫的距離相等”,要強調(diào)這幾個字在題中有很重要的作用線段是一個軸對稱圖形,其中線段的垂直平分線就是它的對稱軸我
3、們用折紙的方法,根據(jù)折疊過程中線段重合說明了線段垂直平分線的一個性質(zhì):線段垂直平分線上的點到線段兩個端點的距離相等所以在這個問題中,要求在“A、B一側(cè)的河岸邊建造一個碼頭,使它到兩個倉庫的距離相等”利用此性質(zhì)就能完成進(jìn)一步提問:“你能用公理或?qū)W過的定理證明這一結(jié)論嗎?”第二環(huán)節(jié):性質(zhì)探索與證明教師鼓勵學(xué)生思考,想辦法來解決此問題。通過討論和思考,引導(dǎo)學(xué)生分析并寫出已知、求證的內(nèi)容。已知:如圖,直線MNAB,垂足是C,且AC=BC,P是MN上的點求證:PA=PB分析:要想證明PA=PB,可以考慮包含這兩條線段的兩個三角形是否全等證明:MNAB,PCA=PCB=90°AC=BC,PC=P
4、C,PCAPCB(SAS) ;PA=PB(全等三角形的對應(yīng)邊相等)教師用多媒體完整演示證明過程 第三環(huán)節(jié):逆向思維,探索判定你能寫出上面這個定理的逆命題嗎?它是真命題嗎? 這個命題不是“如果那么”的形式,要寫出它的逆命題,需分析原命題的條件和結(jié)論,將原命題寫成“如果那么”的形式,逆命題就容易寫出鼓勵學(xué)生找出原命題的條件和結(jié)論。原命題的條件是“有一個點是線段垂直平分線上的點”結(jié)論是“這個點到線段兩個端點的距離相等”此時,逆命題就很容易寫出來“如果有一個點到線段兩個端點的距離相等,那么這個點在這條線段的垂直平分線上”寫出逆命題后時,就想到判斷它的真假如果真,則需證明它;如果假,則需用反例說明引導(dǎo)學(xué)
5、生分析證明過程,有如下四種證法: 證法一:已知:線段AB,點P是平面內(nèi)一點且PA=PB求證:P點在AB的垂直平分線上證明:過點P作已知線段AB的垂線PC,PA=PB,PC=PC,RtPACRtPBC(HL定理)AC=BC,即P點在AB的垂直平分線上證法二:取AB的中點C,過PC作直線AP=BP,PC=PC.AC=CB,APCBPC(SSS)PCA=PCB(全等三角形的對應(yīng)角相等)又PCA+PCB=180°,PCA=PCB=90°,即PCABP點在AB的垂直平分線上證法三:過P點作APB的角平分線AP=BP,1=2,PC=PC,APCBPC(SAS)AC=BC,PCA=PCB
6、(全等三角形的對應(yīng)角相等,對應(yīng)邊相等)又PCA+PCB=180°PCA=PCB=90°P點在線段AB的垂直平分線上證法四:過P作線段AB的垂直平分線PCAC=CB,PCA=PCB=90°,P在AB的垂直平分線上從同學(xué)們的推理證明過程可知線段垂直平分線的性質(zhì)定理的逆命題是真命題,我們把它稱做線段垂直平分線的判定定理第四環(huán)節(jié):鞏固應(yīng)用 在做完性質(zhì)定理和判定定理的證明以后,引導(dǎo)學(xué)生進(jìn)行總結(jié):(1)線段的垂直平分線可以看成是到線段兩個端點距離相等的所有點的集合。(2)到一條線段兩個端點的距離相等個點在這條線段的垂直平分線上因此只需做出這樣的兩個點即可做出線段的垂直平分線。例題:已知:如圖 1-18,在 ABC 中,AB = AC,O 是 ABC 內(nèi)一點,且 OB = OC.求證:直線 AO 垂直平分線段BC。證明: AB = AC, 點 A 在線段 BC 的垂直平分線上(到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上).同理,點 O 在線段 BC 的垂直平分線上. 直線 AO 是線段 BC 的垂直平分線(兩點確定一條直線).學(xué)生是第一次證明一條直線是已知線段的垂直平分線,因此老師要引導(dǎo)學(xué)生理清證明的思路和方法并給出完整的證明過程。第五環(huán)節(jié):隨堂練習(xí)課本P23;習(xí)題1.7:第1、2題第六環(huán)節(jié):課堂小結(jié)通過這節(jié)課的學(xué)習(xí)你有哪些新的收獲?還有哪些困惑
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 旅游行業(yè)景點評級標(biāo)準(zhǔn)
- 手術(shù)中的電生理監(jiān)測
- 自制禮物課件教學(xué)課件
- 河南省2024九年級語文上冊第二單元8就英法聯(lián)軍遠(yuǎn)征中國致巴特勒上尉的信課件新人教版
- 慢病調(diào)理中心介紹
- 消防演練總結(jié)講評
- 農(nóng)業(yè)物聯(lián)網(wǎng)導(dǎo)論
- 感恩課件英文教學(xué)課件
- 玉米灰斑病病害循環(huán)
- 氣管切開燒傷病人的護理
- 2024產(chǎn)學(xué)研合作框架協(xié)議
- 申請銀行減免利息的申請書2
- 2023年甘肅省工程設(shè)計研究院有限責(zé)任公司招聘筆試真題
- 《剪映專業(yè)版:短視頻創(chuàng)作案例教程(全彩慕課版)》 課件 第6章 創(chuàng)作生活Vlog
- 重大事故隱患判定標(biāo)準(zhǔn)與相關(guān)事故案例培訓(xùn)課件
- 公安行政執(zhí)法綜合實訓(xùn)智慧樹知到期末考試答案章節(jié)答案2024年南京警察學(xué)院
- 火龍罐綜合灸療法
- 深圳市中小學(xué)生流感疫苗接種知情同意書
- 數(shù)據(jù)、模型與決策(運籌學(xué))課后習(xí)題和案例答案007
- 機電控制工程基礎(chǔ)實驗報告
- 實驗室安全管理流程圖3)
評論
0/150
提交評論