下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、.初三上學(xué)期數(shù)學(xué)教學(xué)方案:二次函數(shù)的圖象和性質(zhì)查字典數(shù)學(xué)網(wǎng)為大家準(zhǔn)備了初三上學(xué)期數(shù)學(xué)教學(xué)方案,供大家參考,希望能幫助到大家。教學(xué)目的【知識(shí)與技能】使學(xué)生掌握用待定系數(shù)法由圖象上三個(gè)點(diǎn)的坐標(biāo)求二次函數(shù)的關(guān)系式的方法;使學(xué)生掌握拋物線的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸等條件求出函數(shù)的關(guān)系式的方法.【過程與方法】體會(huì)數(shù)學(xué)在生活中的作用,培養(yǎng)學(xué)生的動(dòng)手操作才能.【情感、態(tài)度與價(jià)值觀】讓學(xué)生體驗(yàn)二次函數(shù)的關(guān)系式的應(yīng)用,進(jìn)步學(xué)生對(duì)數(shù)學(xué)重要性的意識(shí).重點(diǎn)難點(diǎn)【重點(diǎn)】二次函數(shù)圖象上一個(gè)點(diǎn)的坐標(biāo)或三個(gè)點(diǎn)的坐標(biāo),分別求二次函數(shù)y=ax2+bx+c的關(guān)系式.【難點(diǎn)】圖象上三個(gè)點(diǎn)的坐標(biāo)求二次函數(shù)的關(guān)系式.根據(jù)不同條件選擇不同的方法求
2、二次函數(shù)的關(guān)系式.教學(xué)過程一、問題引入1.一次函數(shù)的表達(dá)式是什么?如何求出它的表達(dá)式?一次函數(shù)的表達(dá)式y(tǒng)=kx+b,只需知道一次函數(shù)圖象上兩個(gè)點(diǎn)的坐標(biāo),利用待定系數(shù)法求出系數(shù)k、b.2.二次函數(shù)圖象上的幾個(gè)點(diǎn)的坐標(biāo),可以求出這個(gè)二次函數(shù)的表達(dá)式?本節(jié)課我們來研究用待定系數(shù)法求二次函數(shù)的表達(dá)式.板書二、新課教授問題1.假如一個(gè)二次函數(shù)的圖象經(jīng)過-1,10,1,4,2,7三點(diǎn),能求出這個(gè)二次函數(shù)的表達(dá)式嗎?假如能,求出這個(gè)二次函數(shù)的表達(dá)式.解:設(shè)所求二次函數(shù)的表達(dá)式為y=ax2+bx+c.由函數(shù)圖象經(jīng)過-1,10,1,4,2,7三點(diǎn),得到關(guān)于a、b、c的三元一次方程組解這個(gè)方程組,得:a=2,b=
3、-3,c=5.所求二次函數(shù)的表達(dá)式是y=2x2-3x+5.歸納1:求二次函數(shù)y=ax2+bx+c的表達(dá)式,關(guān)鍵是求出a、b、c的值.由條件如二次函數(shù)圖象上的三個(gè)點(diǎn)的坐標(biāo)可以列出關(guān)于a、b、c的三元一次方程組,求出三個(gè)待定系數(shù)a、b、c就可以寫出二次函數(shù)的表達(dá)式.問題2.一個(gè)二次函數(shù)的圖象過點(diǎn)0,1,它的頂點(diǎn)坐標(biāo)是8,9,求這個(gè)二次函數(shù)的關(guān)系式.分析:二次函數(shù)y=ax2+bx+c通過配方可得y=ax-h2+k的形式稱為頂點(diǎn)式,h,k為拋物線的頂點(diǎn)坐標(biāo),因?yàn)檫@個(gè)二次函數(shù)的圖象頂點(diǎn)坐標(biāo)是8,9,因此,可以設(shè)函數(shù)關(guān)系式為:y=ax-82+9,由于二次函數(shù)的圖象過點(diǎn)0,1,將0,1代入所設(shè)函數(shù)關(guān)系式,即
4、可求出a的值.歸納2:假如知道拋物線的頂點(diǎn)坐標(biāo)h,k,可設(shè)函數(shù)關(guān)系式為y=ax-h2+k,只需要再找一個(gè)條件求出a的值即可.三、典型例題【例1】 有一個(gè)二次函數(shù),當(dāng)x=0時(shí),y=-1;當(dāng)x=-2時(shí),y=0;當(dāng)x=時(shí),y=0.求這個(gè)二次函數(shù)的表達(dá)式.解:設(shè)所求二次函數(shù)的表達(dá)式為y=ax2+bx+c,根據(jù)題意,得解方程組,得答:所求二次函數(shù)的表達(dá)式為y=x2+x-1.【例2】 拋物線的對(duì)稱軸是直線x=2,且經(jīng)過3,1和0,-5兩點(diǎn),求二次函數(shù)的關(guān)系式.解法一:設(shè)所求二次函數(shù)的表達(dá)式是y=ax2+bx+c,因?yàn)槎魏瘮?shù)的圖象過點(diǎn)0,-5,可求得c=-5.又由于二次函數(shù)的圖象過點(diǎn)3,1,且對(duì)稱軸是直線
5、x=2,可以得解這個(gè)方程組,得所以所求的二次函數(shù)的關(guān)系式為y=-2x2+8x-5.解法二:設(shè)所求二次函數(shù)的關(guān)系式為y=ax-h2+k,由于二次函數(shù)的圖象經(jīng)過3,1和0,-5兩點(diǎn),可以得到:解這個(gè)方程組,得所以,所求二次函數(shù)的關(guān)系式為y=-2x-22+3,即y=-2x2+8x-5.【例3】拋物線y=x2-4x+8與直線y=x+1交于B、C兩點(diǎn).1在同一平面直角坐標(biāo)系中畫出直線與拋物線;2記拋物線的頂點(diǎn)為A,求ABC的面積.解:1如圖,畫出直線y=x+1與拋物線y=x2-4x+8.2由y=x2-4x+8=x-42,得點(diǎn)A的坐標(biāo)為4,0.解方程組得B、C兩點(diǎn)的坐標(biāo)分別為B2,2、C7,4.5.過B、
6、C兩點(diǎn)分別作x軸的垂線,垂足分別為B1、C1,那么SABC=-=BB1+CC1B1C1-AB1·BB1-AC1·CC1=2+4.5×5-×2×2-×3×4.5=7.5.小結(jié):讓學(xué)生討論、交流、歸納得到:二次函數(shù)的最大值或最小值,就是該函數(shù)的頂點(diǎn)坐標(biāo),應(yīng)用頂點(diǎn)式求解方便,用一般式求解計(jì)算量較大.四、穩(wěn)固練習(xí)1.二次函數(shù)當(dāng)x=-3時(shí),有最大值-1,且當(dāng)x=0時(shí),y=3,求二次函數(shù)的關(guān)系式.【答案】解法一:設(shè)所求二次函數(shù)的關(guān)系式為y=ax2+bx+c,因?yàn)閳D象過點(diǎn)0,3,所以c=3.又由于二次函數(shù)當(dāng)x=-3時(shí),有最大值-1,可以得
7、到:解這個(gè)方程組,得所以,所求二次函數(shù)的關(guān)系式為y=x2+x+3.解法二:設(shè)所求二次函數(shù)的關(guān)系式為y=ax-h2+k,依題意,得y=ax+32-1.因?yàn)槎魏瘮?shù)的圖象過點(diǎn)0,3,所以有3=a0+32-1,解得a=,所以,所求二次函數(shù)的關(guān)系式為y=x+32-1,即y=x2+x+3.2.二次函數(shù)y=x2+px+q的圖象的頂點(diǎn)坐標(biāo)是5,-2,求二次函數(shù)的關(guān)系式.【答案】依題意,得解得:p=-10,q=23,所以,所求二次函數(shù)的關(guān)系式是y=x2-10x+23.五、課堂小結(jié)1.求二次函數(shù)的關(guān)系式,常見的有幾種類型?兩種類型:1一般式:y=ax2+bx+c;2頂點(diǎn)式:y=ax-h2+k,其頂點(diǎn)坐標(biāo)是h,k
8、.2.如何確定二次函數(shù)的關(guān)系式?讓學(xué)生回憶、考慮、交流,得出:關(guān)鍵是確定上述兩個(gè)式子中的待定系數(shù),通常需要三個(gè)條件.在詳細(xì)解題時(shí),應(yīng)根據(jù)詳細(xì)的條件靈敏選用適宜的形式,運(yùn)用待定系數(shù)法求解.教學(xué)反思本節(jié)課研究了二次函數(shù)y=ax2+bx+c表達(dá)式的求法:歸納1:求二次函數(shù)y=ax2+bx+c的表達(dá)式,關(guān)鍵是求出a、b、c的值.由條件如二次函數(shù)圖象上的三個(gè)點(diǎn)的坐標(biāo)可以列出關(guān)于a、b、c的三元一次方程組,求出三個(gè)待定系數(shù)a、b、c就可以寫出二次函數(shù)的表達(dá)式.歸納2:假如知道拋物線的頂點(diǎn)坐標(biāo)h,k,可設(shè)方程為y=ax-h2+k,只需要再找一個(gè)條件求出a的值即可.死記硬背是一種傳統(tǒng)的教學(xué)方式,在我國有悠久的
9、歷史。但隨著素質(zhì)教育的開展,死記硬背被作為一種僵化的、阻礙學(xué)生才能開展的教學(xué)方式,漸漸為人們所摒棄;而另一方面,老師們又為進(jìn)步學(xué)生的語文素養(yǎng)煞費(fèi)苦心。其實(shí),只要應(yīng)用得當(dāng),“死記硬背與進(jìn)步學(xué)生素質(zhì)并不矛盾。相反,它恰是進(jìn)步學(xué)生語文程度的重要前提和根底。一般說來,“老師概念之形成經(jīng)歷了非常漫長的歷史。楊士勛唐初學(xué)者,四門博士?春秋谷梁傳疏?曰:“師者教人以不及,故謂師為師資也。這兒的“師資,其實(shí)就是先秦而后歷代對(duì)老師的別稱之一。?韓非子?也有云:“今有不才之子師長教之弗為變其“師長當(dāng)然也指老師。這兒的“師資和“師長可稱為“老師概念的雛形,但仍說不上是名副其實(shí)的“老師,因?yàn)椤袄蠋煴匦枰忻鞔_的傳授知識(shí)的對(duì)象和本身明確的職責(zé)。要根據(jù)不同條件選擇不同的方法求二次函數(shù)的關(guān)系式,體會(huì)一題多解的樂趣,激發(fā)學(xué)生的學(xué)習(xí)欲望.本節(jié)課的處理仍然是在老師的引導(dǎo)下,讓學(xué)生探究、歸納,得到新知.單靠“死記還不行,還得“活用,姑且稱之為“先死后活吧。讓學(xué)生把一周看到或聽到的新穎事記下來,摒棄那些假話套話空話,寫出自己的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東警官學(xué)院《導(dǎo)演學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東環(huán)境保護(hù)工程職業(yè)學(xué)院《工程熱力學(xué)D》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東第二師范學(xué)院《糧食質(zhì)量安全與控制實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東財(cái)貿(mào)職業(yè)學(xué)院《社會(huì)工作專業(yè)英語》2023-2024學(xué)年第一學(xué)期期末試卷
- 贛南科技學(xué)院《大氣污染控制》2023-2024學(xué)年第一學(xué)期期末試卷
- 贛東學(xué)院《創(chuàng)新創(chuàng)業(yè)教育》2023-2024學(xué)年第一學(xué)期期末試卷
- 三年級(jí)品德與社會(huì)下冊(cè)第三單元第一課我們的生活需要誰教案新人教版
- 三年級(jí)數(shù)學(xué)上冊(cè)8分?jǐn)?shù)的初步認(rèn)識(shí)1分?jǐn)?shù)的初步認(rèn)識(shí)第1課時(shí)幾分之一導(dǎo)學(xué)案新人教版
- 三年級(jí)數(shù)學(xué)上冊(cè)二千克和克第2課時(shí)克的認(rèn)識(shí)教案蘇教版
- 三年級(jí)數(shù)學(xué)下冊(cè)五面積第1課時(shí)什么是面積教案北師大版
- 民用無人駕駛航空器產(chǎn)品標(biāo)識(shí)要求
- 2025年上半年河南省西峽縣部分事業(yè)單位招考易考易錯(cuò)模擬試題(共500題)試卷后附參考答案-1
- 深交所創(chuàng)業(yè)板注冊(cè)制發(fā)行上市審核動(dòng)態(tài)(2020-2022)
- 手術(shù)室護(hù)理組長競聘
- 電力系統(tǒng)繼電保護(hù)試題以及答案(二)
- 小學(xué)生防打架斗毆安全教育
- 2024年醫(yī)院產(chǎn)科工作計(jì)劃例文(4篇)
- 2024-2025學(xué)年九年級(jí)英語上學(xué)期期末真題復(fù)習(xí) 專題09 單詞拼寫(安徽專用)
- 網(wǎng)絡(luò)運(yùn)營代銷合同范例
- 2024年全國統(tǒng)一高考英語試卷(新課標(biāo)Ⅰ卷)含答案
- 中國音樂史與名作賞析智慧樹知到期末考試答案章節(jié)答案2024年山東師范大學(xué)
評(píng)論
0/150
提交評(píng)論