版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、第四節(jié)第四節(jié) 隱函數(shù)、參數(shù)方程確定隱函數(shù)、參數(shù)方程確定函數(shù)的導(dǎo)數(shù)相關(guān)變化率函數(shù)的導(dǎo)數(shù)相關(guān)變化率一、隱函數(shù)導(dǎo)數(shù)一、隱函數(shù)導(dǎo)數(shù)二、由參數(shù)方程確定函數(shù)導(dǎo)數(shù)二、由參數(shù)方程確定函數(shù)導(dǎo)數(shù)三、相關(guān)變化率三、相關(guān)變化率四、小結(jié)四、小結(jié)1.定義定義:.)(稱稱為為隱隱函函數(shù)數(shù)由由方方程程所所確確定定的的函函數(shù)數(shù)xyy .)(形式稱為顯函數(shù)形式稱為顯函數(shù)xfy 0),( yxF)(xfy 隱函數(shù)的顯化隱函數(shù)的顯化問題問題: 隱函數(shù)不易顯化或不能顯化如何求導(dǎo)隱函數(shù)不易顯化或不能顯化如何求導(dǎo)? 隱函數(shù)求導(dǎo)法則隱函數(shù)求導(dǎo)法則:用復(fù)合函數(shù)求導(dǎo)法則直接對方程兩邊求導(dǎo)用復(fù)合函數(shù)求導(dǎo)法則直接對方程兩邊求導(dǎo).02cosln xx
2、yxyexy如如一、隱函數(shù)的導(dǎo)數(shù)一、隱函數(shù)的導(dǎo)數(shù)例例1.,00 xyxdxdydxdyyeexy的的導(dǎo)導(dǎo)數(shù)數(shù)所所確確定定的的隱隱函函數(shù)數(shù)求求由由方方程程解解,求導(dǎo)求導(dǎo)方程兩邊對方程兩邊對x0 dxdyeedxdyxyyx解得解得,yxexyedxdy , 0, 0 yx由原方程知由原方程知000 yxyxxexyedxdy. 1 例例2.0ln03 xydxdyyxeyx的的導(dǎo)導(dǎo)數(shù)數(shù)所所確確定定的的隱隱函函數(shù)數(shù)求求由由方方程程解解,求導(dǎo)求導(dǎo)方程兩邊對方程兩邊對x0132 dxdyxeedxdyyxyy解得解得,dxdy, 1, 0 yx由由原原方方程程知知0011010 edxdyxedxdy
3、x 0例例3.,23,23,333線線通通過過原原點點在在該該點點的的法法并并證證明明曲曲線線的的切切線線方方程程點點上上求求過過的的方方程程為為設(shè)設(shè)曲曲線線CCxyyxC 解解,求導(dǎo)求導(dǎo)方程兩邊對方程兩邊對xyxyyyx 333322)23,23(22)23,23(xyxyy . 1 所求切線方程為所求切線方程為)23(23 xy. 03 yx即即2323 xy法線方程為法線方程為,xy 即即顯然通過原點顯然通過原點.例例4 (1).)1 , 0(, 144處的值處的值在點在點求求設(shè)設(shè)yyxyx 解解求求導(dǎo)導(dǎo)得得方方程程兩兩邊邊對對x)1(04433 yyyxyx得得代代入入1, 0 yx;
4、4110 yxy求求導(dǎo)導(dǎo)得得兩兩邊邊再再對對將將方方程程x)1(04)(122123222 yyyyyxyx得得4110 yxy, 1, 0 yx代代入入.16110 yxy解解 上式兩邊再對x求導(dǎo) 得 的二階導(dǎo)數(shù) (2) 例例 4求由方程0sin21yyx所確定的隱函數(shù) y 方程兩邊對x求導(dǎo) 得 0cos211dxdyydxdy 于是 ydxdycos22 3222)cos2(sin4)cos2(sin2yyydxdyydxyd3222)cos2(sin4)cos2(sin2yyydxdyydxyd3222)cos2(sin4)cos2(sin2yyydxdyydxyd 觀察函數(shù)觀察函數(shù).,
5、)4(1)1(sin23xxxyexxxy 方法方法:先在方程兩邊取對數(shù)先在方程兩邊取對數(shù), 然后利用隱函數(shù)的求導(dǎo)然后利用隱函數(shù)的求導(dǎo)方法求出導(dǎo)數(shù)方法求出導(dǎo)數(shù).-對數(shù)求導(dǎo)法對數(shù)求導(dǎo)法適用范圍適用范圍:.)()(的情形的情形數(shù)數(shù)多個函數(shù)相乘和冪指函多個函數(shù)相乘和冪指函xvxu2.對數(shù)求導(dǎo)法對數(shù)求導(dǎo)法例例5解解 142)1(3111)4(1)1(23 xxxexxxyx等式兩邊取對數(shù)得等式兩邊取對數(shù)得xxxxy )4ln(2)1ln(31)1ln(ln求導(dǎo)得求導(dǎo)得上式兩邊對上式兩邊對 x142)1(3111 xxxyy.,)4(1)1(23yexxxyx 求求設(shè)設(shè)例例6解解.),0(sinyxxy
6、x 求求設(shè)設(shè)等式兩邊取對數(shù)得等式兩邊取對數(shù)得xxylnsinln 求求導(dǎo)導(dǎo)得得上上式式兩兩邊邊對對xxxxxyy1sinlncos1 )1sinln(cosxxxxyy )sinln(cossinxxxxxx )sinln(cossinlnsinsinxxxxxexxxxx 又又解解一般地一般地)0)()()()( xuxuxfxv)()(1)(lnxfdxdxfxfdxd 又又)(ln)()(xfdxdxfxf )()()()(ln)()()()(xuxuxvxuxvxuxfxv )(ln)()(lnxuxvxf 例例7.),0( )1 (yxxyx 求求設(shè)設(shè) ) 1(ln ln xxexy
7、xxxx解解 12)1(ln)1(ln xxxxxxxxy xxxx1) 1(ln2.),0,( , )2(yaxxxayaxxxax 求求設(shè)設(shè) )1(lnln xxaaaxxxxx解解 xxaxaaaxxaaxexxxx1lnlnln 11lnln aaaxxxxxaxxexxaay=)1(lnln xxaaxxx xxaaxxaaxx1lnln 11ln aaaxxaxxx.,)()(定定的的函函數(shù)數(shù)稱稱此此為為由由參參數(shù)數(shù)方方程程所所確確間間的的函函數(shù)數(shù)關(guān)關(guān)系系與與確確定定若若參參數(shù)數(shù)方方程程xytytx 例如例如 ,22tytx2xt 22)2(xty 42x xy21 消去參數(shù)消去參
8、數(shù)問題問題: 消參困難或無法消參如何求導(dǎo)消參困難或無法消參如何求導(dǎo)?t二、由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)二、由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)),()(1xttx 具有單調(diào)連續(xù)的反函數(shù)具有單調(diào)連續(xù)的反函數(shù)設(shè)函數(shù)設(shè)函數(shù))(1xy , 0)(,)(),( ttytx 且且都都可可導(dǎo)導(dǎo)再再設(shè)設(shè)函函數(shù)數(shù)由復(fù)合函數(shù)及反函數(shù)的求導(dǎo)法則得由復(fù)合函數(shù)及反函數(shù)的求導(dǎo)法則得dxdtdtdydxdy dtdxdtdy1 )()(tt )()(ttdtdxdtdydxdy 即即,)()(中中在方程在方程 tytx,)()(二二階階可可導(dǎo)導(dǎo)若若函函數(shù)數(shù) tytx)(22dxdydxddxyd dxdtttdtd)()( )(1
9、)()()()()(2tttttt .)()()()()(322tttttdxyd 即即例例8解解dtdxdtdydxdy ttcos1sin taatacossin 2cos12sin2 tdxdy. 1 .2)cos1()sin(處處的的切切線線方方程程在在求求擺擺線線 ttayttax.),12(,2ayaxt 時時當(dāng)當(dāng) 所求切線方程為所求切線方程為)12( axay)22( axy即即.)2(;)1(,21sin,cos,002000的的速速度度大大小小炮炮彈彈在在時時刻刻的的運運動動方方向向炮炮彈彈在在時時刻刻求求其其運運動動方方程程為為發(fā)發(fā)射射炮炮彈彈發(fā)發(fā)射射角角以以初初速速度度不
10、不計計空空氣氣的的阻阻力力ttgttvytvxv 例例9解解xyovxvyv0v.,)1(00可由切線的斜率來反映可由切線的斜率來反映時刻的切線方向時刻的切線方向軌跡在軌跡在時刻的運動方向即時刻的運動方向即在在tt)cos()21sin(020 tvgttvdxdy cossin00vgtv .cossin0000 vgtvdxdytt軸軸方方向向的的分分速速度度為為時時刻刻沿沿炮炮彈彈在在yxt,)2(000)cos(0ttttxtvdtdxv cos0v 00)21sin(20ttttygttvdtdyv 00singtv 時刻炮彈的速度為時刻炮彈的速度為在在0t22yxvvv 20200
11、20sin2tggtvv 例例10解解.sincos33表示的函數(shù)的二階導(dǎo)數(shù)表示的函數(shù)的二階導(dǎo)數(shù)求由方程求由方程 taytaxdtdxdtdydxdy )sin(cos3cossin322ttatta ttan )(22dxdydxddxyd )cos()tan(3 tatttatsincos3sec22 tatsin3sec4 .,)()(變化率稱為相關(guān)變化率變化率稱為相關(guān)變化率這樣兩個相互依賴的這樣兩個相互依賴的之間也存在一定關(guān)系之間也存在一定關(guān)系與與從而它們的變化率從而它們的變化率之間存在某種關(guān)系之間存在某種關(guān)系與與而變量而變量都是可導(dǎo)函數(shù)都是可導(dǎo)函數(shù)及及設(shè)設(shè)dtdydtdxyxtyyt
12、xx 相關(guān)變化率問題相關(guān)變化率問題:已知其中一個變化率時如何求出另一個變化率已知其中一個變化率時如何求出另一個變化率?三、相關(guān)變化率三、相關(guān)變化率例例11解解?,500./140,500率率是是多多少少觀觀察察員員視視線線的的仰仰角角增增加加米米時時當(dāng)當(dāng)氣氣球球高高度度為為秒秒米米其其速速率率為為上上升升米米處處離離地地面面鉛鉛直直一一汽汽球球從從離離開開觀觀察察員員則則的的仰仰角角為為觀觀察察員員視視線線其其高高度度為為秒秒后后設(shè)設(shè)氣氣球球上上升升, ht500tanh 求求導(dǎo)導(dǎo)得得上上式式兩兩邊邊對對 tdtdhdtd 5001sec2 ,/140秒秒米米 dtdh2sec,5002 米米
13、時時當(dāng)當(dāng)h)/(14. 0分分弧弧度度 dtd 仰角增加率仰角增加率 米米500米米500例例12解解?,20,120,4000,/803水水面面每每小小時時上上升升幾幾米米米米時時問問水水深深的的水水槽槽頂頂角角為為米米形形狀狀是是長長為為水水庫庫秒秒的的體體流流量量流流入入水水庫庫中中米米河河水水以以則則水庫內(nèi)水量為水庫內(nèi)水量為水深為水深為設(shè)時刻設(shè)時刻),(),(tVtht234000)(htV 求求導(dǎo)導(dǎo)得得上上式式兩兩邊邊對對 tdtdhhdtdV 38000,/288003小小時時米米 dtdV小小時時米米/104. 0 dtdh水面上升之速率水面上升之速率0604000m,20米米時時當(dāng)當(dāng) h隱函數(shù)求導(dǎo)法則隱函數(shù)求導(dǎo)法則: 直接對方程兩邊求導(dǎo)直接對方程兩邊求導(dǎo);對數(shù)求導(dǎo)法對數(shù)求導(dǎo)法: 對方程兩邊取對數(shù)對方程兩邊取對數(shù),按隱函數(shù)的求導(dǎo)按隱函數(shù)的求導(dǎo)法則求導(dǎo)法則求導(dǎo);參數(shù)方程求導(dǎo)參數(shù)方程求導(dǎo): 實質(zhì)上是利用復(fù)合函數(shù)求導(dǎo)法則實質(zhì)上是利用復(fù)合函數(shù)求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 威視行業(yè)測繪培訓(xùn)
- 《淘寶營銷活動技巧》課件
- 《房地產(chǎn)人職業(yè)規(guī)劃》課件
- 《課件視覺設(shè)計》課件
- 2024年四川省德陽市公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 2023年陜西省漢中市公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 2024年甘肅省平?jīng)鍪泄_招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2021年黑龍江省鶴崗市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2021年遼寧省沈陽市公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 2022年黑龍江省大興安嶺地區(qū)公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- WordA4信紙(A4橫條直接打印版)
- 藥品庫存清單(2015年)
- (完整版)會計準(zhǔn)則(全文)
- 百家姓全文拼音版A4打印
- 專家論證挖孔樁專項施工方案
- IPC標(biāo)準(zhǔn)解析學(xué)習(xí)課程
- 麻花鉆鉆孔中常見問題的原因和解決辦法
- 部分常用巖土經(jīng)驗值
- 薩克斯曲譜回家
- 外墻真石漆購銷合同
- 藝體教研組活動記錄
評論
0/150
提交評論