




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、學(xué) 號:20138 大 學(xué) 畢 業(yè) 論 文 五種插值法的對比研究 A Comparative Study of Five Interpolation Methods學(xué) 院:理學(xué)院教 學(xué) 系:數(shù)學(xué)系專業(yè)班級:信息與計(jì)算科學(xué)專業(yè)1301學(xué)生姓名:指導(dǎo)教師: 講師2017年6月7日目 錄內(nèi)容摘要IAbstractII1 導(dǎo)言11.1 選題背景11.2 研究的目的和意義22 五種插值法32.1 拉格朗日插值32.2 牛頓插值42.3 分段線性插值42.4 分段三次Hermite插值52.5 樣條插值53 五種插值法的對比研究63.1 五種插值法的解題分析比較63.2 五種插值法的實(shí)際應(yīng)用154 結(jié)語2
2、0參考文獻(xiàn)21致謝22內(nèi)容摘要: 插值法是數(shù)值分析中最基本的方法之一。 在實(shí)際問題中遇到的函數(shù)是許許多多的,有的甚至給不出表達(dá)式,只供給了一些離散數(shù)據(jù),例如,在查對數(shù)表時(shí),需要查的數(shù)值在表中卻找不到,所以只能先找到它相鄰的數(shù),再從旁邊找出它的更正值,按一定的關(guān)系把相鄰的數(shù)加以更正,從而找出要找的數(shù),這種更正關(guān)系事實(shí)上就是一種插值。在實(shí)際應(yīng)用中,采用不同的插值函數(shù),逼近的效果也不同。我們接觸過五種基本的插值方法,有拉格朗日插值、牛頓插值、分段線性插值、分段三Hermite插值和樣條插值函數(shù)。此篇論文就是圍繞這些插值法展開討論,先是簡單介紹五種插值法,了解其基本概念及解題思路,然后通過分析對比不同
3、插值法在解答典型例題的過程中存在的優(yōu)缺點(diǎn)進(jìn)行總結(jié)對比,得出結(jié)論。最后使用MATLAB軟件的編程實(shí)現(xiàn),繪制出不同插值法下的函數(shù)曲線,從幾何上再次進(jìn)行對比,得出結(jié)論。通過此次論文的寫作,我對于插值法有了更深的理解和認(rèn)知,對于今后插值法的選擇也會(huì)更加容易權(quán)衡把握。關(guān)鍵詞: 插值法;對比;插值函數(shù);多項(xiàng)式Abstract: Interpolation is one of the most basic methods in numerical analysis.There are many functions in practical problems,some give no expression,s
4、ome only supply discrete data. So we only find it again from the adjacent number next to find its correct value and according to a certain relationship to the adjacent number corrected.The correct relationship is an interpolation in fact.In practical applications,the effect of approximation is also
5、different when different interpolation functions are used.We have contacted five basic interpolation methods,such as Lagrange interpolation,Newton interpolation, piecewise linear interpolation, piecewise three Hermite interpolation and spline interpolation function.Firstly,this paper introduces the
6、basic concepts and ideas to solve problems of five kinds of interpolation methods.And then through the comparative analysis of the advantages and disadvantages of different interpolation methods in the process of solving typical problems.Finally,using MATLAB software programming,draw different inter
7、polation method of function curve,from geometry again contrast,draw conclusions.Through the writing of this paper,I have a deeper understanding and recognition of the interpolation method,and it will be easier to balance and select which interpolation methods to use in the future.Key Words: Interpol
8、ation method comparison interpolation function polynomial 1 導(dǎo)言1.1 選題背景插值方法最早來源于生產(chǎn)實(shí)踐,作為一種數(shù)學(xué)方法,其經(jīng)歷了漫長的歷史考驗(yàn)與證實(shí)。早在數(shù)千多年前,我們的祖先就憑借插值方法,利用已知的少部分日月五星運(yùn)行規(guī)律的觀測值獲得了相對較完整的運(yùn)行規(guī)律。在一千多年前的隋唐時(shí)期,中國的賢能之士就將插值技術(shù)應(yīng)用到了制定歷法的過程中。而到公元六世紀(jì)時(shí),隋朝的劉焯又把等距節(jié)點(diǎn)的二次插值應(yīng)用于天文計(jì)算中。在16-19世紀(jì),多項(xiàng)式插值被用來解決航海學(xué)和天文學(xué)的一些重要問題。十七世紀(jì)時(shí),牛頓(Newton)和格雷格里(Gregory)建
9、立了等距結(jié)點(diǎn)上的一般插值公式,后來拉格朗日(Lagrange)建立出了非等距結(jié)點(diǎn)插值公式。在微積分產(chǎn)生并且廣泛應(yīng)用之后,插值的基本理論和結(jié)果隨之有了進(jìn)一步的完善,之后其應(yīng)用也越來越廣泛,尤其是在計(jì)算機(jī)普遍使用之后,插值法在各領(lǐng)域中的地位也越來越重要,與此同時(shí)自身也得到了發(fā)展。經(jīng)典的插值方法是基于泰勒插值(Taylor)和拉格朗日插值的,其實(shí)Taylor插值與拉格朗日插值的聯(lián)系十分密切,即拉格朗日插值的極限形式可以視為Taylor插值,反之,Taylor插值的離散化形式就是拉格朗日插值。我們在建立拉格朗日插值多項(xiàng)式時(shí)很是簡單方便,但一旦節(jié)點(diǎn)增加,就不能再使用原來的多項(xiàng)式計(jì)算,需要重新建立新的多項(xiàng)
10、式,這無疑使計(jì)算變得繁瑣起來,而Newton(牛頓)插值就克服了這一問題。此外根據(jù)實(shí)際問題,插值法的應(yīng)用在很多情況下都需要盡量滿足插值函數(shù)與原函數(shù)相差無異的前提,即要求在節(jié)點(diǎn)上插值函數(shù)與被插值函數(shù)的函數(shù)值和導(dǎo)數(shù)值都是相等的,也就是另一種插值法,Hermite(埃爾米特)插值法。事實(shí)上,我們把Taylor插值和拉格朗日插值進(jìn)行聯(lián)系融合就能總結(jié)出Hermite(埃爾米特)插值,這也推廣了前兩種插值法?,F(xiàn)在,插值技術(shù)的應(yīng)用在很多領(lǐng)域得到了普及,當(dāng)我們需要認(rèn)識某一事物的本質(zhì)時(shí),常根據(jù)其觀測點(diǎn),利用插值技術(shù)對特定問題進(jìn)行深入拓展和解決,以加深對該事物的認(rèn)識。多項(xiàng)式插值是函數(shù)插值中最常用的一種形式。在一般
11、的插值問題中,插值條件可以唯一地確定一個(gè)次數(shù)不超過的插值多項(xiàng)式。從幾何上可以解釋為:可以從多項(xiàng)式曲線中找出一些不超過次的點(diǎn)通過平面上個(gè)不同的點(diǎn)。插值多項(xiàng)式有兩種常用的表達(dá)式形式,一種是拉格朗日插值多項(xiàng)式,另一種是牛頓插值多項(xiàng)式,此外拉格朗日插值公式與牛頓插值公式永遠(yuǎn)相等。此外,在進(jìn)行高階次插值時(shí)常常出現(xiàn)不穩(wěn)定的情況,而采用樣條插值和分段線性插值法就可以防止這類情況的發(fā)生。分段線性插值或分段三次埃爾米特插值等此種分段低次插值法可以使逼近效果加強(qiáng),但卻整體光滑而不收斂。為此,引入了更理想化的三次樣條插值法。1.2 研究的目的和意義在數(shù)值分析中,對于插值函數(shù)的學(xué)習(xí)是必不可少的,因?yàn)樗茌o助我們把模糊
12、的數(shù)據(jù)準(zhǔn)確化,把想當(dāng)然的數(shù)據(jù)變得無懈可擊。但是對于五種插值函數(shù),他們具有不同的優(yōu)勢和適用范圍,五種方法對同一問題的處理的結(jié)果一定不同,這時(shí)對于方法的選擇顯得至關(guān)重要。因此我們對于他們差異化的了解與認(rèn)知是必不可少的。通過此篇論文的對比研究,我希望不但可以給數(shù)值分析領(lǐng)域中的學(xué)習(xí)者一些幫助和啟示甚至讓他們在求知的路上少些磕絆,也能推動(dòng)一些運(yùn)用到插值函數(shù)知識的社會(huì)工作領(lǐng)域的工作者的職業(yè)進(jìn)步。2 五種插值法2.1 拉格朗日插值拉格朗日是次多項(xiàng)式插值,解題方法是先構(gòu)造插值基函數(shù)再求次插值多項(xiàng)式。對Lagrange 次插值多項(xiàng)式,首先要選取個(gè)插值點(diǎn)上的次插值基函數(shù), 有了這個(gè)次插值基函數(shù),就能很容易的寫出次
13、Lagrange插值多項(xiàng)式了,其具體的表達(dá)式為1。拉格朗日插值原理:表1 插值數(shù)值表.Lagrange插值的方法是:對于給定的個(gè)插值節(jié)點(diǎn)和對應(yīng)的函數(shù)值,我們利用次Lagrange插值多項(xiàng)式,可以對插值區(qū)間上任意的對應(yīng)的函數(shù)值利用下式來求解。表1中的次Lagrange 插值多項(xiàng)式的數(shù)學(xué)表達(dá)式為:。其中,是插值基函數(shù),即。Lagrange插值多項(xiàng)式的余項(xiàng)是,且其中。2.2 牛頓插值牛頓插值也是次多項(xiàng)式插值,提出了構(gòu)造插值多項(xiàng)式的另一種方法。它具有繼承性和易變化節(jié)點(diǎn)的特點(diǎn)。牛頓插值原理: Newton插值的方法:由表1構(gòu)造的牛頓插值多項(xiàng)式為: 用上式插值時(shí),首先要計(jì)算各階差商,而各階差商的計(jì)算可以歸
14、納為一階差商的逐次計(jì)算,一般的余項(xiàng)為:2,其中2.3 分段線性插值 分段線性插值的意義在于克服拉格朗日插值法的非收斂性。其實(shí)分段線性插值就是利用每兩個(gè)相鄰的插值基點(diǎn)做線性插值,就可以得到分段線性插值函數(shù):,其中,4。 設(shè)分段線性插值函數(shù)為,則具有以下性質(zhì):可以分段表示并且在每個(gè)小區(qū)間上都是線性函數(shù);,;在整個(gè)區(qū)間上連續(xù)3。 特點(diǎn):插值函數(shù)的序列具有一致的收斂性,彌補(bǔ)了高階拉格朗日插值方法的不足,可是存在插值精度低、基點(diǎn)處不光滑的缺陷,其中增加插值點(diǎn)可以提高插值精度。幾何上,分段線性插值是通過順次連接各插值點(diǎn)形成線段,從而逼近原始曲線,這也是計(jì)算機(jī)繪圖的基本原理。2.4 分段三次Hermite插
15、值對于函數(shù),有時(shí)我們不僅知道它在一些點(diǎn)處的函數(shù)值,而且還能知道它在這些點(diǎn)的導(dǎo)數(shù)值。當(dāng)在這些點(diǎn)上的插值函數(shù)的函數(shù)值和導(dǎo)數(shù)值同時(shí)滿足與的函數(shù)值和導(dǎo)數(shù)值相等的要求時(shí),此時(shí)的問題就是Hermite插值問題或帶有導(dǎo)數(shù)的插值問題。假定已知函數(shù)在插值區(qū)間上的個(gè)互不相同的節(jié)點(diǎn)處滿足及,如果函數(shù)的存在滿足下列條件:在每個(gè)小區(qū)間上的多項(xiàng)式次數(shù)為3;,5就稱是在個(gè)節(jié)點(diǎn)上的分段三次埃爾米特插值多項(xiàng)式。所以, 2.5 樣條插值函數(shù)2.5.1 樣條插值的相關(guān)概念分段低次插值函數(shù),雖然有收斂性,但平整度差。因此,早期的制圖工程師在制圖時(shí)首先會(huì)在樣點(diǎn)處固定彈性木條,其他各處任意成形,這樣就能畫出一條曲線,定義樣條曲線。事實(shí)上
16、,該曲線是由分段三次曲線并接而成,在連接點(diǎn)也就是樣點(diǎn)上必須要二階連續(xù)可導(dǎo),從數(shù)學(xué)角度加以歸納得到數(shù)學(xué)樣條這個(gè)概念。利用樣條插值方法得到的插值曲線光滑性好,但卻不收斂。由此我們可以引用三次樣條函數(shù)以達(dá)到插值函數(shù)的收斂性且光滑度也更好了。2.5.2 三次樣條插值函數(shù)對于給定區(qū)間上這個(gè)節(jié)點(diǎn)和在這些點(diǎn)上的函數(shù)值,若函數(shù)滿足:在每個(gè)子區(qū)間上,多項(xiàng)式的次數(shù)不超過3;,在上連續(xù);滿足的插值條件。則是函數(shù)關(guān)于個(gè)節(jié)點(diǎn)處的三次樣條插值函數(shù)。3 五種插值法的對比研究3.1 五種插值法的解題分析比較例1已知表2011/21請寫出在以上3個(gè)節(jié)點(diǎn)處的牛頓插值(一次和二次)以及拉格朗日插值。解: (1) 拉格朗日型插值多項(xiàng)
17、式 構(gòu)造過(0,1)的一次插值基函數(shù) 則一次插值多項(xiàng)式為: 構(gòu)造過的二次插值基函數(shù) 因此二次插值多項(xiàng)式為:(2)牛頓型插值多項(xiàng)式構(gòu)造牛頓一次插值函數(shù): 因?yàn)?所以構(gòu)造牛頓二次插值函數(shù): 因?yàn)?于是綜上,由拉格朗日公式,牛頓公式 及例題可以看出:(1)拉格朗日插值法優(yōu)勢:公式的結(jié)構(gòu)整齊緊密,對于理論研究分析非常方便;缺點(diǎn): 當(dāng)增加或減少一個(gè)插值點(diǎn)的計(jì)算,將需要重新計(jì)算相應(yīng)的插值基函數(shù),然后插值多項(xiàng)式的公式代入結(jié)果也會(huì)改變,大大增加了計(jì)算量,解題十分繁瑣。此外,當(dāng)插值點(diǎn)很多時(shí),拉格朗日多項(xiàng)式的插值次數(shù)也會(huì)很高,使計(jì)算結(jié)果的值變得動(dòng)蕩。換言之,即使在已知的幾個(gè)點(diǎn)處得到正確的結(jié)果,但在附近的點(diǎn)處“事實(shí)
18、上”的值和得到的結(jié)果之間的會(huì)有較大的差距。(2) 牛頓插值法優(yōu)勢:牛頓插值法的公式是另一種次插值多項(xiàng)式的構(gòu)造形式,然而它卻克服了拉格朗日插值多項(xiàng)式的缺陷,它的一個(gè)顯著優(yōu)勢就是每當(dāng)增加一個(gè)插值節(jié)點(diǎn),只要在原牛頓插值公式中增加一項(xiàng)就可形成高一次的插值公式。此外,如果在實(shí)際應(yīng)用中遇到等距分布的插值節(jié)點(diǎn),牛頓插值公式就能得到進(jìn)一步的簡化,從而得到等距節(jié)點(diǎn)的插值公式,這樣為縮短實(shí)際運(yùn)算時(shí)間做出了很大的貢獻(xiàn)。缺點(diǎn):這種插值僅僅要求插值多項(xiàng)式在插值節(jié)點(diǎn)處與被插函數(shù)有相等的函數(shù)值,而這種插值多項(xiàng)式卻不能全面反映被插值函數(shù)的性態(tài)。然而在許多實(shí)際問題中,不僅要求插值函數(shù)與被插值函數(shù)在所有節(jié)點(diǎn)處有相同的函數(shù)值,它也
19、需要在一個(gè)或全部節(jié)點(diǎn)上插值多項(xiàng)式與被插函數(shù)有相同的低階甚至高階的導(dǎo)數(shù)值。對于這些情況,拉格朗日插值和牛頓插值都不能滿足。例2 過0,1兩點(diǎn)并且滿足,構(gòu)造一個(gè)三次埃爾米特插值多項(xiàng)式6。解:利用公式有 所以 由這個(gè)例題2可以看出:對于埃爾米特插值,我們不僅已知函數(shù)在某些點(diǎn)處的函數(shù)值,而且插值函數(shù)在這些點(diǎn)處的導(dǎo)數(shù)與被插函數(shù)相同。因此,(1)優(yōu)點(diǎn):關(guān)于插值函數(shù)和被插函數(shù)的貼合程度,埃爾米特插值比多項(xiàng)式的好。 (2)缺點(diǎn):埃爾米特插值只有在被插值函數(shù)在插值節(jié)點(diǎn)處的函數(shù)值和導(dǎo)數(shù)值已知時(shí)才可以使用,而這在實(shí)際問題中是無法實(shí)現(xiàn)的,因?yàn)樵谝话闱闆r下我們是不可能也沒必要知道函數(shù)在插值節(jié)點(diǎn)處的導(dǎo)數(shù)值。因此成為能否運(yùn)
20、用埃爾米特插值的一個(gè)重要因素就是:我們知不知道插值函數(shù)在節(jié)點(diǎn)處的導(dǎo)數(shù)值。 例3 對于函數(shù) 取等距節(jié)點(diǎn),建立插值多項(xiàng)式,并探究它與的誤差。解: 根據(jù)題意知道多項(xiàng)式的次數(shù)為10,代入拉格朗日插值多項(xiàng)式的公式有 其中 7計(jì)算結(jié)果如下表所示:表3-1.000.038460.03846-0.400.200000.19999-0.900.047061.57872-0.300.307690.23535-0.800.058820.05882-0.200.500000.50000-0.700.07547-0.22620-0.100.800000.84340-0.600.100000.100000.001.000
21、001.00000-0.500.137930.25376對于0,1 區(qū)間上的值可以由對稱性得到,根據(jù)結(jié)果可以看出,在原點(diǎn)附近能較好的逼近,而在其余點(diǎn)處與的差異較大,越靠近端點(diǎn),逼近效果就越不好。 由例題3可以不難發(fā)現(xiàn),在高次插值中拉格朗日插值多項(xiàng)式存在較大缺陷,因而為了彌補(bǔ)這種不足我們一般利用分段線性插值的方法。例4 給定函數(shù)取等距節(jié)點(diǎn),作分段線性插值函數(shù),并計(jì)算的值。解: 首先計(jì)算出-1,0區(qū)間上的函數(shù)值表:表4x-1-0.8-0.6-0.4-0.20y0.038460.058820.100000.200000.500001.00000對于區(qū)間0,1上的函數(shù)值可由對稱性得到。其次,構(gòu)造各點(diǎn)的
22、插值基函數(shù): () 故得到分段線性插值函數(shù)把代入上式,=0.03846×(-5)×(-0.9+0.8)+0.05882×5×(-0.9+1) =0.5×0.03846+0.5×0.05882 =0.04864 優(yōu)點(diǎn): 一方面,與原函數(shù)相比,分段線性插值和3次多項(xiàng)式插值函數(shù)在每個(gè)單元區(qū)間上收斂性強(qiáng),數(shù)值穩(wěn)定性好且易于計(jì)算機(jī)編程實(shí)現(xiàn);另一方面,分段線性插值計(jì)算簡便。缺點(diǎn):分段線性插值不能保證在節(jié)點(diǎn)處的插值函數(shù)的導(dǎo)數(shù)的連續(xù)性,即不光滑。但三次樣條插值卻彌補(bǔ)了分段線性插值在節(jié)點(diǎn)處不光滑的缺陷,從而在某些工程技術(shù)上得到了很好的應(yīng)用。例5 給定數(shù)
23、據(jù)表如下:表50.250.300.390.450.530.50000.54770.62450.67080.7280并滿足條件,求出三次樣條插值8。解: 由此得矩陣形式的方程組為 求解此方程組,得 又三次樣條表達(dá)式為 將代入得綜上,當(dāng)插值節(jié)點(diǎn)的密度漸漸變大時(shí),三次樣條插值函數(shù)不但收斂于函數(shù)本身及其微商也收斂于函數(shù)的微商,這一特性比多項(xiàng)式插值更好。此外,樣條函數(shù)不必是逐段三次多項(xiàng)式,或它可以是一個(gè)簡單的函數(shù)且連續(xù)點(diǎn)保持足夠光滑。3.2 五種插值法的實(shí)際應(yīng)用例1 有一種閘閥,其關(guān)閉度為(d 為管內(nèi)徑, h 為開度),局部阻力系數(shù)為, 與存在的函數(shù)關(guān)系,其對應(yīng)關(guān)系如下:表601/82/83/84/85
24、/86/87/80.000.070.200.812.065.5217.6097.80如果將閘閥控制在時(shí),求其局部阻力系數(shù)的值9。解: 由題可知,該函數(shù)表是等距節(jié)點(diǎn)排序。因此,選取=0.15附近的三個(gè)節(jié)點(diǎn)使用牛頓插值公式進(jìn)行二次插值,繪制圖表。并將其一階和二階差分算出列于該表的右側(cè)各列:表700.001/80.070.072/80.260.190.123/80.810.590.260.24 若進(jìn)行三次插值,則需選取4個(gè)節(jié)點(diǎn),于是我們再選一個(gè)節(jié)點(diǎn)=3/8,添加在表上的最后一行,其 這樣,由三次插值所得的值為:綜上可以得知,當(dāng)需要在原插值上取更高次的插值時(shí),只需再添一項(xiàng)對應(yīng)的節(jié)點(diǎn)并進(jìn)行計(jì)算,而且仍可
25、以使用之前的計(jì)算結(jié)果,也不會(huì)帶來任何影響。這是 Newton 插值法的優(yōu)點(diǎn)。例2 氣象局在天津的9月收集到某一天從上午九點(diǎn)到下午三點(diǎn)的氣溫變化數(shù)據(jù)如下:求這段時(shí)間溫度與時(shí)間的關(guān)系。解: 方法一:用拉格朗日插值法解, x=9:1:15; y=1./(1+x.2) ; xh=9:0.1:15; yh=lagrange(x,y,xh) ; y1=1./(1+xh.2) ; plot(xh,yh,'-r') hold on plot(xh,y1,'-b') legend('拉格朗日插值曲線','原曲線') Runge 現(xiàn)象的產(chǎn)生圖方法二
26、:用分段插值曲線解 x=9:1:15; y=1./(1+x.2) ; xh=9:0.1:15; yh=lagrange(x,y,xh) ; y1=1./(1+xh.2) ; y2=interpl(x,y,xh,'spline') ; plot(xh,y1,'-b',xh,yh,'-r',xh,y2,'xk') ; legend(原曲線,拉格朗日插值曲線,分段插值曲線)圖方法三:用三次樣條插值法解 x=9:1:15; y=1./(1+x.2) ; xh=9:0.1:15; yh=lagrange(x,y,xh) ; y1=1./(1+xh.2) ; y2=interpl(x, y, xh,'spline') ; y3=interpl(x, y, xh) ; plot(xh,y1,'-b',xh,yh,'-r',xh,y2,'xk'xh,y3, ' -y' ) ; legend(原曲線,拉格朗日插值曲線,三次樣條插值曲線 ,分段 線性插值曲線)10圖從以上三種方法我們可以看出,拉格朗日插值的方法做的圖像明顯與原函數(shù)的偏差較大,但分段插值克服了高階拉格朗日插值法的缺點(diǎn),它可以增加插
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 回顧高中師生情誼的優(yōu)美語句摘抄
- 數(shù)字化時(shí)代下文化遺產(chǎn)展示與傳播在文化遺產(chǎn)地文化產(chǎn)業(yè)發(fā)展中的應(yīng)用報(bào)告
- 工業(yè)互聯(lián)網(wǎng)平臺AR交互技術(shù)在工業(yè)設(shè)備狀態(tài)監(jiān)測與預(yù)警中的應(yīng)用研究報(bào)告001
- 2025年元宇宙社交平臺社交電商模式創(chuàng)新與挑戰(zhàn)報(bào)告
- 咨詢工程師宏觀課件下載
- 咨詢工程師培訓(xùn)視頻課件
- 咨詢工程師串講課件
- 2025年醫(yī)藥企業(yè)研發(fā)外包(CRO)模式藥物研發(fā)生物技術(shù)產(chǎn)品研發(fā)報(bào)告
- 2025年醫(yī)藥企業(yè)研發(fā)外包(CRO)技術(shù)轉(zhuǎn)移與人才培養(yǎng)報(bào)告
- 2025年醫(yī)藥流通企業(yè)供應(yīng)鏈優(yōu)化與成本控制智能供應(yīng)鏈管理供應(yīng)鏈管理政策法規(guī)影響報(bào)告
- 家用冰箱市場調(diào)研報(bào)告
- 國際財(cái)務(wù)報(bào)告準(zhǔn)則
- 初中數(shù)學(xué)-專項(xiàng)24 圓內(nèi)最大張角米勒角問題
- 行政單位酒店住宿合同
- 機(jī)械設(shè)備安裝程序、安裝分類、固定方式及安裝新技術(shù)應(yīng)用
- 大樓維修改造工程投標(biāo)方案(完整技術(shù)標(biāo))
- 《建筑施工安全檢查標(biāo)準(zhǔn)》JGJ
- 建筑陶瓷磚檢測報(bào)告及原始記錄
- 施工現(xiàn)場安全生產(chǎn)(文明施工)檢查評價(jià)表
- 液氧試題(試題復(fù)習(xí))
評論
0/150
提交評論