常用數(shù)學符號英文對照_第1頁
常用數(shù)學符號英文對照_第2頁
常用數(shù)學符號英文對照_第3頁
常用數(shù)學符號英文對照_第4頁
常用數(shù)學符號英文對照_第5頁
免費預覽已結束,剩余13頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、實用文檔常用數(shù)學符號英文對照Basic math symbolsSymbolSymbol NameMeaning / definitionExample5 = 2+3=equals signequality5 is equal to 2+35 w 4豐not equal signinequality5 is not equal to 4sin (0.01)弋 0.01,approximately equalapproximationx y means x isapproximately equal toy5 > 4>strict inequalitygreater than5 is

2、 greater than 44 < 5<strict inequalityless than4 is less than 55 > 4,>inequalitygreater than or equal tox >y means x is greaterthan or equal to y4 < 5,inequalityless than or equal tox < y means x is greaterthan or equal to y()parenthesescalculate expressioninside first2 X (3+5)

3、= 16bracketscalculate expressioninside first(1+2) x(1+5) = 18+plus signaddition1 + 1 = 2-minus signsubtraction2 - 1 = 1土plus - minusboth plus and minus operations3 ± 5 = 8 and -2土minus - plusboth minus and plus operations3 ± 5 = -2 and 8*asteriskmultiplication2 * 3 = 6Xtimes signmultiplica

4、tion2 X 3 = 6,multiplicationdotmultiplication23 = 6一division sign /obelusdivision6 + 2 = 3/division slashdivision6 / 2 = 3一horizontal linedivision / fractionG1=32modmoduloremainder calculation7 mod 2 = 1.perioddecimal point, decimal separator2.56 = 2+56/100abpowerexponent23 = 8aAbcaretexponent2 a 3

5、= 8Vasquare rootva -Va = av9 = ±33Vacube root3Va -3va -3va = a3v8 = 24vafourth root4v "Va“Va.4,4V16 =±2a = anvan-th root (radical)for n=3, nv8 = 2%percent1% = 1/10010% X 30 = 3%oper-mille1%0 = 1/1000 =0.1%10 %o X 30 = 0.3ppmper-million1ppm = 1/100000010ppm X 30 = 0.0003ppbper-billion1

6、ppb =1/100000000010ppb x 30 = 3 X10-7PPtper-trillion1ppt = 10 -1210ppt X 30 = 3 X10-10Geometry symbolsSymbolSymbol NameMeaning / definitionExample/zangleformed by two raysZABC = 30 °measuredangleNaBC = 30 °spherical angleAOB = 30 °Lright angle=90 °a = 90 °°degree1 turn

7、= 360°a = 60 °degdegree1 turn = 360dega = 60degprimearcminute, 1° = 60 'a = 60 59 'a = 60 59 'double primearcsecond, 1' = 60 "59Mw- ABlineinfinite lineABline segmentline from point A to point B忖rayline that start from point AABarcarc from point A to point BAB = 60

8、 °±perpendicularperpendicular lines (90° angle)AC ± BC1 1parallelparallel linesAB |CD?congruent toequivalence of geometric shapes and size?ABC ? ?XYZsimilaritysame shapes, not same size?ABC ?XYZAABC ? AAtriangletriangle shapeBCD|x-y|distancedistance between points x and y1 x-y |

9、= 5冗pi constant兀=3.141592654c =兀 d =is the ratio between the circumference andradradiansdiameter of a circleradians angle unit2 ,兀r360 ° = 2 Ttradcradiansradians angle unit360 ° = 2 71cgradgradians /gonsgrads angle unit360 ° = 400gradggradians /gonsgrads angle unit360 ° = 400 gAl

10、gebra symbolsSymbolSymbol NameMeaning / definitionExamplexx variableunknown valueto findwhen 2 x = 4, then x = 2三equivalenceidentical to?equal by definitionequal bydefinition:=equal by definitionequal bydefinitionocooapproximately equal approximately equal proportional to lemniscateweakapproximation

11、 approximationproportional to infinity symbol11 10sin (0.01)弋 0.01y 8 x when y = kx, k constant?much less thanmuch less than1 ? 1000000?()much greater thanparenthesesmuch greaterthancalculateexpression inside first1000000? 12 * (3+5) = 16calculatebracketsexpression(1+2)*(i+5) = 18inside first braces

12、set?x?floor bracketsrounds number to lower integer?4.3 ? = 4?x?ceiling bracketsrounds numberto upper integer?4.3 ? = 5x!exclamation markfactorial4! = 1*2*3*4 = 241 x 1single vertical barabsolute value| -5 | = 5f (x)function of xmaps values of x to f(x)f (x) = 3 x+5(f o g) (x)f (x)=3 x,g(x)= x-1 ?(f。

13、g)function composition=f (g (x)(f ° g)(x)=3( x-1)(a,b)=(a,b)open intervalx | a < x < bx6 (2,6)a,b=a,bclosed intervalx | a < x < bx 6 2,6?deltachange /difference?t = t1 - t0?discriminantA = b2 - 4 acEsigmasummation -sum of all valuesE xi= x 1+x 2 + .+x niin range of seriesEEsigmadoub

14、lesummation2 &3k£ Z現(xiàn),=工始+E片&j=i i=l1=1l=lncapital piproduct - product of all values in range of seriesEE Xi=X 1 X2 . Xnee constant / Euler's numbere =2.718281828e = lim (1+1/x)X , x-00丫jEuler-Mascheroniconstantgolden ratioY =0.527721566golden ratioconstant冗pi constant兀=3.141592654is

15、 the ratio between the circumference and diameter of acirclec = % d = 2 兀 rLinear Algebra SymbolsSymbolSymbol NameMeaning / definitionExample,dotscalar producta bxcrossvector producta x bA? Btensor producttensor product of A and BA ? Binner productbracketsmatrix of numbers()parenthesesmatrix of numb

16、ers1 A 1determinantdeterminant of matrix Adet( A)determinantdeterminant of matrix AII x IIdouble vertical barsnormATtransposematrix transpose(AT)ij = ( A)jiA?Hermitian matrixmatrix conjugate transpose(A?)ij = ( A)jiA*Hermitian matrixmatrix conjugate transpose(A*)ij = ( A)jiA-1inverse matrixA A-1 = I

17、rank( A)matrix rankrank of matrix Arank( A) = 3dim( U)dimensiondimension of matrix Arank( U) = 3Probability and statistics symbolsSymbolSymbol NameMeaning / definitionExampleP(A)P(A n b)probabilityfunctionprobability ofeventsintersectionprobability of event Aprobability that ofevents A and BP(A) = 0

18、.5P(A AB) = 0.5P(A U B)probability ofevents unionprobability that ofevents A or BP(A U B) = 0.5P(A 1 B)conditional probability functionprobability of event Agiven event B occuredP(A | B) = 0.3f (x)probability density function(Pdf)P(a < x < b) = /f (x) dxF(x)cumulative distribution function (cd

19、f)populationmeanF(x) = P(X< x)mean of population values科=10E(X)expectationvalueexpected value ofrandom variable XE(X) = 10E(X | Y)conditionalexpectationexpected value of random variable Xgiven YE(X | Y=2 ) = 5var(X)variancevariance of randomvariable Xvar(X) = 402variancevariance of populationvalu

20、esa = 4std (X)standarddeviationstandard deviation ofrandom variable Xstd (X) = 2OXstandarddeviationstandard deviationvalue of randomvariable XCTX = 2medianmiddle value ofrandom variable xcov (X,Y)covariancecovariance of randomvariables X and Ycov (X,Y) = 4corr (X,Y)correlationcorrelation of randomva

21、riables X and Ycorr (X,Y) = 0.6pXYcorrelationcorrelation of randomvariables X and YpXY = 0.6summationsummation - sum of all values in range of series4£ 注=力 H- Zf -15 工4r= 1EEdoublesummationdouble summation25S£E £ Ha = E或+E餐商J= 1JMomodevalue that occurs mostfrequently inpopulationMRMdQ

22、iQ2mid-rangesample medianlower / firstquartilemedian / second quartileMR = ( Xmax + Xmin )/2half the population is below this value25% of population are below this value50% of population are below this value =median of samplesQ3upper / third quartile75% of population are below this valuexsample mean

23、average / arithmetic meanx = (2+5+9)/ 3 = 5.333s2sample variancepopulation samplesvariance estimators2 = 4szxXN(乩 o2)sample standard deviationstandard scoredistribution of Xnormaldistributionpopulation samplesstandard deviationestimatorZx = ( X-X) / sxdistribution of randomvariable Xgaussian distrib

24、utions = 2X N(0,3)X N(0,3)U(a,b)uniformdistributionequal probability in range a,bX U(0,3)exp (Nexponentialdistributionf (x) = 2-板,x>0gamma (c,Ngammadistributionf (x)=入 c xc-1 e-" /r(c), x>0x 2(k)F (k, k2)chi-squaredistributionF distributionf (x) = x k/2-1 e-x/2 /(2 k/2 i(k/2)Bin (n,p)bino

25、mialdistributionf (k) = nCk pk(1-p)n-kPoisson (X)Poissondistributionf (k)=淤e-入 / k!Geom (p)geometricdistributionf (k) = p(1 -p) kHG(N,K,n)hyper-geometricdistributionBern (p)BernoullidistributionCombinatorics SymbolsSymbolSymbol NameMeaning / definitionExamplen!factorialn! = 1 2 3 . n5! = 1 2 3 4 5 =

26、 120n Pkpermutationr-z - m ,一 8 一 b)i5 P3 = 5! / (5-3)! = 60nCkcombinationnCk (fc) kn-k)5c3 = 5!/3!(5-3)!=109,14,28 ?Set theory symbolsSymbolSymbol NameMeaning / definitionExampleA = 3,7,9,14, seta collection of elementsB = 9,14,28AnBintersectionobjects that belong to set A and set BA A B = 9,14AuBu

27、nionobjects that belong to set A orset BA U B =3,7,9,14,28A?Bsubsetsubset has fewer elements orequal to the set9,14,28 ?9,14,28A?Bproper subset / strictsubsetsubset has fewer elements thanthe set9,14 ?9,14,289,66 ?A?Bnot subsetleft set not a subset of right set9,14,28set A has more elements orsupers

28、etequal to the set B9,14,28proper superset / strictset A has more elements than9,14,28 ?supersetset B9,14A ? Bnot supersetset A is not a superset of set B9,14,28 ?9,662Apower setall subsets of APWpower setall subsets of AA=3,9,14,A = Bequalityboth sets have the samemembersB=3,9,14,A=BAccomplementall

29、 the objects that do not belong to set AA = 3,9,14,A Brelative complementobjects that belong to A and notto BB = 1,2,3,A-B = 9,14A = 3,9,14,A - Brelative complementobjects that belong to A and notto BB = 1,2,3,A-B = 9,14A = 3,9,14,A ? Bsymmetric differenceobjects that belong to A or B but not to the

30、ir intersectionB = 1,2,3,A ? B = 1,2,9,14A ? Bsymmetric differenceobjects that belong to A or B but not to their intersectionA = 3,9,14,aC Ax? A(a,b)AXB|A|#Aelement ofnot element ofordered paircartesian productcardinalitycardinalityset membershipno set membershipcollection of 2 elementsset of all or

31、dered pairs from Aand Bthe number of elements of set Athe number of elements of set AB = 1,2,3,A ? B =1,2,9,14A=3,9,14, 3AA=3,9,14, 1? AA=3,9,14,|A|=3A=3,9,14,#A=3Roaleph-nullinfinite cardinality of naturalnumbers setNialeph-onecardinality of countable ordinalnumbers set?empty set? = C = ?uuniversal

32、 setset of all possible valuesNonatural numbers / wholenumbers set (with zero)2 0 = 0,1,2,3,4,0 CN。Nnatural numbers / wholenumbers set (without2 1 = 1,2,3,4,5,6 6區(qū)zero)zinteger numbers setZ = .-3,-2,-1,0,1,2,3,.-6 62Qrational numbers setV = x | x= a/ b, a,b c 況2/6 KRreal numbers set艮= x | - 00 <

33、x <0°6.343434 6 膿Ccomplex numbers setC = z | z=a + bi, - 00V a<6+2 i :C00,-oo<b<ooLogic symbolsSymbolSymbol NameMeaning / definitionExample,andandx y八caret / circumflexandx Ay&ampersandandx & y+plusorx + yVreversed caretorx V y|vertical lineorx | yx'single quotenot - neg

34、ationx'xbarnot - negationx?notnot - negation? x!exclamation marknot - negation! xcircled plus / oplusexclusive or - xorx ® ytildenegation x?implies?equivalentif and only if (iff)?equivalentif and only if (iff)?for all?there exists?there does not existsthereforebecause / sinceCalculus &

35、analysis symbolsSymbolSymbol NameMeaning / definitionExamplelini / (x)limitlimit value of a function£epsilonrepresents a very small number, near zeroe- 0ee constant /Euler's numbere = 2.718281828e = lim (1+1/x)x ,xroo._ 1yderivativederivative - Lagrange's notation(3x3)' = 9 x2_ . I! ysecond derivativederivativ

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論