




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、集合練習(xí)題知識(shí)點(diǎn)一般地,我們把研究對(duì)象統(tǒng)稱為元素,把一些元素組成的總體叫做集合(簡(jiǎn)稱集)1.集合中元素具的有幾個(gè)特征確定性因集合是由一些元素組成的總體,當(dāng)然,我們所說(shuō)的“一些元素”是確定的互異性即集合中的元素是互不相同的,如果出現(xiàn)了兩個(gè)(或幾個(gè))相同的元素就只能算一個(gè),即集合中的元素是不重復(fù)出現(xiàn)的無(wú)序性即集合中的元素沒(méi)有次序之分2.常用的數(shù)集及其記法我們通常用大寫(xiě)拉丁字母,表示集合,用小寫(xiě)拉丁字母a,b,c,表示集合中的元素常用數(shù)集及其記法非負(fù)整數(shù)集(或自然數(shù)集),記作N正整數(shù)集,記作N*或N+;整數(shù)集,記作Z有理數(shù)集,記作Q實(shí)數(shù)集,記作R3元素與集合之間的關(guān)系4.反饋演練1.填空題2選擇題
2、以下說(shuō)法正確的( )(A) “實(shí)數(shù)集”可記為R或?qū)崝?shù)集(B)a,b,c,d與c,d,b,a是兩個(gè)不同的集合(C)“我校高一年級(jí)全體數(shù)學(xué)學(xué)得好的同學(xué)”不能組成一個(gè)集合,因?yàn)槠湓夭淮_定 已知2是集合M= 中的元素,則實(shí)數(shù)為( )(A) 2 (B)0或3 (C) 3 (D)0,2,3均可二、集合的幾種表示方法1、 列舉法將所給集合中的元素一一列舉出來(lái),寫(xiě)在大括號(hào)里,元素與元素之間用逗號(hào)分開(kāi)*有限集與無(wú)限集* 有限集-含有有限個(gè)元素的集合叫有限集例如: A=120以內(nèi)所有質(zhì)數(shù) 無(wú)限集-含有無(wú)限個(gè)元素的集合叫無(wú)限集例如: B=不大于3的所有實(shí)數(shù)2、 描述法用集合所含元素的共同特征表示集合的方法. 具體
3、方法:在花括號(hào)內(nèi)先寫(xiě)上表示這個(gè)集合元素的一般符號(hào)及以取值(或變化)范圍,再畫(huà)一條豎線,在豎線后寫(xiě)出這個(gè)集合中元素所具有的共同特征.3、 圖示法 - 畫(huà)一條封閉曲線,用它的內(nèi)部來(lái)表示一個(gè)集合.常用于表示不需給具體元素的抽象集合.對(duì)已給出了具體元素的集合也當(dāng)然可以用圖示法來(lái)表示如: 集合1,2,3,4,5用圖示法表示為:三、集合間的基本關(guān)系觀察下面幾組集合,集合A與集合B具有什么關(guān)系? (1) A=1,2,3,B=1,2,3,4,5.(2) A=x|x>3,B=x|3x-6>0. (3) A=正方形,B=四邊形.(4) A=,B=0.1.子集定義:一般地,對(duì)于兩個(gè)集合A與B,如果集合A
4、中的任何一個(gè)元素都是集合B的元素,我們就說(shuō)集合A包含于集合B,或集合B包含集合A,記作AB(或BA),即若任意xA,有xB,則AB(或AB)。這時(shí)我們也說(shuō)集合A是集合B的子集(subset)。如果集合A不包含于集合B,或集合B不包含集合A,就記作AB(或BA),即:若存在xA,有xB,則AB(或BA)說(shuō)明:AB與BA是同義的,而AB與BA是互逆的。規(guī)定:空集是任何集合的子集,即對(duì)于任意一個(gè)集合A都有A。例1判斷下列集合的關(guān)系. (1) N_Z; (2) N_Q; (3) R_Z; (4) R_Q; (5) A=x| (x-1)2=0, B=y|y2-3y+2=0; (6) A=1,3, B=x
5、|x2-3x+2=0; (7) A=-1,1, B=x|x2-1=0;(8)A=x|x是兩條邊相等的三角形 B=x|x是等腰三角形。 問(wèn)題:觀察(7)和(8),集合A與集合B的元素,有何關(guān)系?集合A與集合B的元素完全相同,從而有:2.集合相等 定義:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素(即AB),同時(shí)集合B的任何一個(gè)元素都是集合A的元素(即BA),則稱集合A等于集合B,記作A=B。如:A=x|x=2m+1,mZ,B=x|x=2n-1,nZ,此時(shí)有A=B。問(wèn)題:(1)集合A是否是其本身的子集?(由定義可知,是) (2)除去與A本身外,集合A的其它子集與集合A的關(guān)系如何?(
6、包含于A,但不等于A)3.真子集: 由“包含”與“相等”的關(guān)系,可有如下結(jié)論:(1)AA (任何集合都是其自身的子集);(2)若AB,而且AB(即B中至少有一個(gè)元素不在A中),則稱集合A是集合B的真子集(proper subset),記作A B。(空集是任何非空集合的真子集)(3)對(duì)于集合A,B,C,若AB,BC,即可得出AC;對(duì)A B,B C,同樣有A C, 即:包含關(guān)系具有“傳遞性”。4.證明集合相等的方法:(1) 證明集合A,B中的元素完全相同;(具體數(shù)據(jù))(2) 分別證明AB和BA即可。(抽象情況)對(duì)于集合A,B,若AB而且BA,則A=B。 例1判斷下列兩組集合是否相等? (1)A=x
7、|y=x+1與B=y|y=x+1; (2)A=自然數(shù)與B=正整數(shù)例2解不等式x-3>2,并把結(jié)果用集合表示。結(jié)論:一般地,一個(gè)集合元素若為n個(gè),則其子集數(shù)為2n個(gè),其真子集數(shù)為2n-1個(gè),特別地,空集的子集個(gè)數(shù)為1,真子集個(gè)數(shù)為0。1、已知集合,,且,則等于(A) (B) (C) (D) 2、設(shè)全集,集合,則 A B C
8、D 3、若關(guān)于x的方程x2+mx+1=0有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍是 A(-1,1) B(-2,2) C(-,-2)(2,+) D(-,-1)(1,+) 4、若集合M=-1,0,1,N=0,1,2,則MN等于 A0,1 B-1,0,1 C0,1,2 D-1,0,1,2 5、若全集,則集合等于( )
9、A. B. C. D. 6、若,則 A B C D 7、已知U=1,2,3,4,5,6,7,8,A=1,3,5,7,B=2,4,5,則=A.6,8 B.
10、 5,7 C. 4,6,7 D. 1,3,5,6,88、若全集M=,N=,=( )(A) (B) (C) (D) 9、設(shè)全集則( )A B 10、已知集合P=xx21,M=a.若PM=P,則a
11、的取值范圍是 A(-, -1 B1, +) C-1,1 D(-,-1 1,+) 11、若全集,集合,則 。 12、已知集合A=x,B=x,則AB= Ax Bx Cx &
12、#160; Dx 13、集合,,則等于 (A) (B) (C) (D) 14、已知集合Axx<3B1,2,3,4,則(CRA)B (A)4 (B)3,4
13、0; (C)2,3,4 (D)1,2,3,415、已知集合M=1,2,3,4,MN=2,3,則集合N可以為( ). A.1,2,3 B.1,3,4 C.1,2,4 D.2,3,516、已知全集,則 A B C
14、 D 17、已知集合,若,則實(shí)數(shù)的取值范圍是( ) A B C D 18、已知集合,則 ( )A B C D19、設(shè)全集,集合,則集
15、合=A B C D 20、若集合,則等于 (A) (B) (C) (D), 21、已知集合,則圖中陰影部分表示的集合為A. B. C. D. 22、設(shè)集合( )A B
16、 C D 23、設(shè)全集則(CuA)B=( )A B C D 24、設(shè)全集,集合,則 A B
17、 C D25、已知為實(shí)數(shù)集,則= ( )A B C D 26、若全集U=R,集合= ( ) A(-2,2) B C
18、0; D 27、 設(shè)全集則(CuA)B= ( )A. B. C. D. 28、已知集合,集合,則A B C &
19、#160; D 29、設(shè)集合,則 A B C D 30、設(shè)U=1,2,3,4,M=1,2,N=2,3,則CU(MN)= A1,2,3 B2 C1,3,4 D431、已知全集,集合,則等于 A B C D32、設(shè)集合,= &
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年心理咨詢與治療技術(shù)考試試卷及答案
- 2025年文化項(xiàng)目策劃與執(zhí)行考試試卷及答案
- 2025年物業(yè)管理師資格考試卷及答案
- 2025年全國(guó)研究生入學(xué)考試試卷及答案
- 2025年廣告學(xué)入門(mén)考試試題及答案
- 2025年健康科技與生物醫(yī)學(xué)工程職業(yè)考試試卷及答案
- 2025年暖通空調(diào)工程師職業(yè)資格考試題及答案
- 2025年勞動(dòng)人事?tīng)?zhēng)議處理課程考試題目及答案
- 2025年經(jīng)營(yíng)管理與決策課程考試題目及答案
- 法律碩士(專業(yè)基礎(chǔ)課)模擬試卷124
- 2025-2030年中國(guó)煤電行業(yè)市場(chǎng)深度發(fā)展趨勢(shì)與前景展望戰(zhàn)略研究報(bào)告
- 2025年醫(yī)院感染控制試題及答案
- 公路工程標(biāo)準(zhǔn)施工招標(biāo)文件(2018年版)
- (正式版)SH∕T 3548-2024 石油化工涂料防腐蝕工程施工及驗(yàn)收規(guī)范
- 磁芯參數(shù)對(duì)照表
- 人造草坪設(shè)計(jì)說(shuō)明
- 甘肅省城鎮(zhèn)規(guī)劃管理技術(shù)規(guī)程(試行)
- 波紋管壓漿料計(jì)算公式表
- 《質(zhì)量管理體系文件》成品檢驗(yàn)報(bào)告(COA)
- 會(huì)議記錄表格(模板)
- 國(guó)家高新技術(shù)企業(yè)的稅收優(yōu)惠政策還有待完善
評(píng)論
0/150
提交評(píng)論