蘇州初二數(shù)學(xué)下學(xué)期知識點(自編)_第1頁
蘇州初二數(shù)學(xué)下學(xué)期知識點(自編)_第2頁
蘇州初二數(shù)學(xué)下學(xué)期知識點(自編)_第3頁
蘇州初二數(shù)學(xué)下學(xué)期知識點(自編)_第4頁
蘇州初二數(shù)學(xué)下學(xué)期知識點(自編)_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、精選優(yōu)質(zhì)文檔-傾情為你奉上第七、八章 數(shù)據(jù)的收集與概率考點一、平均數(shù) 1、平均數(shù)的概念(1)平均數(shù):一般地,如果有n個數(shù)那么,叫做這n個數(shù)的平均數(shù),讀作“x拔”。(2)加權(quán)平均數(shù):如果n個數(shù)中,出現(xiàn)次,出現(xiàn)次,出現(xiàn)次(這里),那么,根據(jù)平均數(shù)的定義,這n個數(shù)的平均數(shù)可以表示為,這樣求得的平均數(shù)叫做加權(quán)平均數(shù),其中叫做權(quán)。2、平均數(shù)的計算方法(1)定義法:當(dāng)所給數(shù)據(jù)比較分散時,一般選用定義公式:(2)加權(quán)平均數(shù)法:當(dāng)所給數(shù)據(jù)重復(fù)出現(xiàn)時,一般選用加權(quán)平均數(shù)公式:,其中。(3)新數(shù)據(jù)法:當(dāng)所給數(shù)據(jù)都在某一常數(shù)a的上下波動時,一般選用簡化公式:。其中,常數(shù)a通常取接近這組數(shù)據(jù)平均數(shù)的較“整”的數(shù),。是

2、新數(shù)據(jù)的平均數(shù)(通常把叫做原數(shù)據(jù),叫做新數(shù)據(jù))??键c二、統(tǒng)計學(xué)中的幾個基本概念1、總體:所有考察對象的全體叫做總體。2、個體:總體中每一個考察對象叫做個體。3、樣本:從總體中所抽取的一部分個體叫做總體的一個樣本。4、樣本容量:樣本中個體的數(shù)目叫做樣本容量。5、樣本平均數(shù):樣本中所有個體的平均數(shù)叫做樣本平均數(shù)。6、總體平均數(shù):總體中所有個體的平均數(shù)叫做總體平均數(shù),在統(tǒng)計中,通常用樣本平均數(shù)估計總體平均數(shù)??键c三、眾數(shù)、中位數(shù)1、眾數(shù):在一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。2、中位數(shù):將一組數(shù)據(jù)按大小依次排列,把處在最中間位置的一個數(shù)據(jù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)

3、??键c四、方差1、方差的概念在一組數(shù)據(jù)中,各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù),叫做這組數(shù)據(jù)的方差。通常用“”表示,即: 2、方差的計算(1)基本公式:(2)簡化計算公式(): 也可寫成此公式的記憶方法是:方差等于原數(shù)據(jù)平方的平均數(shù)減去平均數(shù)的平方。(3)簡化計算公式():當(dāng)一組數(shù)據(jù)中的數(shù)據(jù)較大時,可以依照簡化平均數(shù)的計算方法,將每個數(shù)據(jù)同時減去一個與它們的平均數(shù)接近的常數(shù)a,得到一組新數(shù)據(jù),那么,此公式的記憶方法是:方差等于新數(shù)據(jù)平方的平均數(shù)減去新數(shù)據(jù)平均數(shù)的平方。(4)新數(shù)據(jù)法:原數(shù)據(jù)的方差與新數(shù)據(jù),的方差相等,也就是說,根據(jù)方差的基本公式,求得的方差就等于原數(shù)據(jù)的方差。3、標(biāo)準(zhǔn)差方差的

4、算數(shù)平方根叫做這組數(shù)據(jù)的標(biāo)準(zhǔn)差,用“s”表示,即考點五、頻率分布1、頻率分布的意義在許多問題中,只知道平均數(shù)和方差還不夠,還需要知道樣本中數(shù)據(jù)在各個小范圍所占的比例的大小,這就需要研究如何對一組數(shù)據(jù)進(jìn)行整理,以便得到它的頻率分布。2、研究頻率分布的一般步驟及有關(guān)概念(1)研究樣本的頻率分布的一般步驟是:計算極差(最大值與最小值的差);決定組距與組數(shù);決定分點;列頻率分布表;畫頻率分布直方圖(2)頻率分布的有關(guān)概念極差:最大值與最小值的差頻數(shù):落在各個小組內(nèi)的數(shù)據(jù)的個數(shù)頻率:每一小組的頻數(shù)與數(shù)據(jù)總數(shù)(樣本容量n)的比值叫做這一小組的頻率??键c六、確定事件和隨機(jī)事件1、確定事件必然發(fā)生的事件:在一

5、定的條件下重復(fù)進(jìn)行試驗時,在每次試驗中必然會發(fā)生的事件。不可能發(fā)生的事件:有的事件在每次試驗中都不會發(fā)生,這樣的事件叫做不可能的事件。2、隨機(jī)事件:在一定條件下,可能發(fā)生也可能不放聲的事件,稱為隨機(jī)事件??键c七、隨機(jī)事件發(fā)生的可能性對隨機(jī)事件發(fā)生的可能性的大小,我們利用反復(fù)試驗所獲取一定的經(jīng)驗數(shù)據(jù)可以預(yù)測它們發(fā)生機(jī)會的大小。要評判一些游戲規(guī)則對參與游戲者是否公平,就是看它們發(fā)生的可能性是否一樣。所謂判斷事件可能性是否相同,就是要看各事件發(fā)生的可能性的大小是否一樣,用數(shù)據(jù)來說明問題??键c八、概率的意義與表示方法1、概率的意義:一般地,在大量重復(fù)試驗中,如果事件A發(fā)生的頻率會穩(wěn)定在某個常數(shù)p附近,

6、那么這個常數(shù)p就叫做事件A的概率。2、事件和概率的表示方法:一般,事件用英文大寫字母ABC,表示事件A的概率p,可記為P(A)=P考點九、確定事件和隨機(jī)事件的概率之間的關(guān)系1、確定事件概率(1)當(dāng)A是必然發(fā)生的事件時,P(A)=1(2)當(dāng)A是不可能發(fā)生的事件時,P(A)=02、確定事件和隨機(jī)事件的概率之間的關(guān)系事件發(fā)生的可能性越來越小0 1概率的值不可能發(fā)生 必然發(fā)生事件發(fā)生的可能性越來越大考點十、古典概型1、古典概型的定義:某個試驗若具有:在一次試驗中,可能出現(xiàn)的結(jié)構(gòu)有有限多個;在一次試驗中,各種結(jié)果發(fā)生的可能性相等。我們把具有這兩個特點的試驗稱為古典概型。2、古典概型的概率的求法一般地,如

7、果在一次試驗中,有n種可能的結(jié)果,并且它們發(fā)生的可能性都相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率為P(A)=考點十一、列表法求概率1、列表法:用列出表格的方法來分析和求解某些事件的概率的方法叫做列表法。2、列表法的應(yīng)用場合:當(dāng)一次試驗要設(shè)計兩個因素,且可能出現(xiàn)的結(jié)果數(shù)目較多時,為不重不漏地列出所有可能的結(jié)果,通常采用列表法??键c十二、樹狀圖法求概率 (10分)1、樹狀圖法:就是通過列樹狀圖列出某事件的所有可能的結(jié)果,求出其概率的方法叫做樹狀圖法。2、運用樹狀圖法求概率的條件:當(dāng)一次試驗要設(shè)計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求

8、概率??键c十三、利用頻率估計概率(8分)1、利用頻率估計概率:在同樣條件下,做大量的重復(fù)試驗,利用一個隨機(jī)事件發(fā)生的頻率逐漸穩(wěn)定到某個常數(shù),可以估計這個事件發(fā)生的概率。2、在統(tǒng)計學(xué)中,常用較為簡單的試驗方法代替實際操作中復(fù)雜的試驗來完成概率估計,這樣的試驗稱為模擬實驗。3、隨機(jī)數(shù):在隨機(jī)事件中,需要用大量重復(fù)試驗產(chǎn)生一串隨機(jī)的數(shù)據(jù)來開展統(tǒng)計工作。把這些隨機(jī)產(chǎn)生的數(shù)據(jù)稱為隨機(jī)數(shù)。第九章 中心對稱四邊形考點、旋轉(zhuǎn) 1、定義:把一個圖形繞某點O轉(zhuǎn)動一個角度的圖形變換叫做旋轉(zhuǎn),其中O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角。2、性質(zhì)(1)對應(yīng)點到旋轉(zhuǎn)中心的距離相等。(2)對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)

9、角??键c、中心對稱1、定義:把一個圖形繞著某一個點旋轉(zhuǎn)180,如果旋轉(zhuǎn)后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。2、性質(zhì)(1)關(guān)于中心對稱的兩個圖形是全等形。(2)關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分。(3)關(guān)于中心對稱的兩個圖形,對應(yīng)線段平行(或在同一直線上)且相等。3、判定:如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱。4、中心對稱圖形把一個圖形繞某一個點旋轉(zhuǎn)180,如果旋轉(zhuǎn)后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心??键c一、四邊

10、形的相關(guān)概念 1、四邊形:在同一平面內(nèi),由不在同一直線上的四條線段首尾順次相接的圖形叫做四邊形。2、凸四邊形:把四邊形的任一邊向兩方延長,如果其他個邊都在延長所得直線的同一旁,這樣的四邊形叫做凸四邊形。3、對角線:在四邊形中,連接不相鄰兩個頂點的線段叫做四邊形的對角線。4、四邊形的不穩(wěn)定性:三角形的三邊如果確定后,它的形狀、大小就確定了,這是三角形的穩(wěn)定性。但是四邊形的四邊確定后,它的形狀不能確定,這就是四邊形所具有的不穩(wěn)定性,它在生產(chǎn)、生活方面有著廣泛的應(yīng)用。5、四邊形的內(nèi)角和定理及外角和定理四邊形的內(nèi)角和定理:四邊形的內(nèi)角和等于360。四邊形的外角和定理:四邊形的外角和等于360。多邊形的

11、內(nèi)角和定理:n邊形的內(nèi)角和180;多邊形的外角和定理:任意多邊形的外角和3606、多邊形的對角線條數(shù)的計算公式:設(shè)多邊形的邊數(shù)為n,則多邊形的對角線條數(shù)為??键c二、平行四邊形1、平行四邊形的概念:兩組對邊分別平行的四邊形叫做平行四邊形。平行四邊形用符號“ABCD”表示,如平行四邊形ABCD記作“ABCD”,讀作“平行四邊形ABCD”。2、平行四邊形的性質(zhì)(1)平行四邊形的鄰角互補,對角相等。(2)平行四邊形的對邊平行且相等。 推論:夾在兩條平行線間的平行線段相等。(3)平行四邊形的對角線互相平分。(4)若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且

12、這兩條直線二等分此平行四邊形的面積。3、平行四邊形的判定(1)定義:兩組對邊分別平行的四邊形是平行四邊形(2)定理1:兩組對角分別相等的四邊形是平行四邊形;定理2:兩組對邊分別相等的四邊形是平行四邊形;定理3:對角線互相平分的四邊形是平行四邊形;定理4:一組對邊平行且相等的四邊形是平行四邊形4、兩條平行線的距離:兩條平行線中,一條直線上的任意一點到另一條直線的距離,叫做這兩條平行線的距離。平行線間的距離處處相等。5、平行四邊形的面積:S平行四邊形=底邊長高=ah考點三、矩形1、矩形的概念有一個角是直角的平行四邊形叫做矩形。2、矩形的性質(zhì)(1)具平行四邊形的一切性質(zhì);(2)矩形的四個角都是直角;

13、(3)矩形的對角線相等;(4)矩形是軸對稱圖形3、矩形的判定(1)定義:有一個角是直角的平行四邊形是矩形(2)定理1:有三個角是直角的四邊形是矩形;定理2:對角線相等的平行四邊形是矩形4、矩形的面積:S矩形=長寬=ab考點四、菱形1、菱形的概念有一組鄰邊相等的平行四邊形叫做菱形2、菱形的性質(zhì)(1)具有平行四邊形的一切性質(zhì);(2)菱形的四條邊相等;(3)菱形的對角線互相垂直,并且每一條對角線平分一組對角;(4)菱形是軸對稱圖形3、菱形的判定(1)定義:有一組鄰邊相等的平行四邊形是菱形(2)定理1:四邊都相等的四邊形是菱形;定理2:對角線互相垂直的平行四邊形是菱形4、菱形的面積:S菱形=底邊長高=

14、兩條對角線乘積的一半考點五、正方形 1、正方形的概念:有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形。2、正方形的性質(zhì)(1)具有平行四邊形、矩形、菱形的一切性質(zhì)(2)正方形的四個角都是直角,四條邊都相等(3)正方形的兩條對角線相等,并且互相垂直平分,每一條對角線平分一組對角(4)正方形是軸對稱圖形,有4條對稱軸(5)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形,兩條對角線把正方形分成四個全等的小等腰直角三角形(6)正方形的一條對角線上的一點到另一條對角線的兩端點的距離相等。3、正方形的判定(1)判定一個四邊形是正方形的主要依據(jù)是定義,途徑有兩種:先證它是矩形,再證有一組鄰邊相

15、等。 先證它是菱形,再證有一個角是直角。(2)判定一個四邊形為正方形的一般順序如下:先證明它是平行四邊形;再證明它是菱形(或矩形);最后證明它是矩形(或菱形)4、正方形的面積:設(shè)正方形邊長為a,對角線長為b, S正方形=考點六、梯形 1、梯形的相關(guān)概念一組對邊平行而另一組對邊不平行的四邊形叫做梯形。梯形中平行的兩邊叫做梯形的底,通常把較短的底叫做上底,較長的底叫做下底。梯形中不平行的兩邊叫做梯形的腰。梯形的兩底的距離叫做梯形的高。兩腰相等的梯形叫做等腰梯形。一腰垂直于底的梯形叫做直角梯形。一般地,梯形的分類如下: 一般梯形梯形 直角梯形 特殊梯形 等腰梯形2、梯形的判定(1)定義:一組對邊平行

16、而另一組對邊不平行的四邊形是梯形。(2)一組對邊平行且不相等的四邊形是梯形。3、等腰梯形的性質(zhì)(1)等腰梯形的兩腰相等,兩底平行。(3)等腰梯形的對角線相等。(4)等腰梯形是軸對稱圖形,它只有一條對稱軸,即兩底的垂直平分線。4、等腰梯形的判定(1)定義:兩腰相等的梯形是等腰梯形(2)定理:在同一底上的兩個角相等的梯形是等腰梯形(3)對角線相等的梯形是等腰梯形。5、梯形的面積(1)如圖,(2)梯形中有關(guān)圖形的面積:;6、梯形中位線定理梯形中位線平行于兩底,并且等于兩底和的一半。三角形中的中位線連接三角形兩邊中點的線段叫做三角形的中位線。(1)三角形共有三條中位線,并且它們又重新構(gòu)成一個新的三角形

17、。(2)要會區(qū)別三角形中線與中位線。三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半。三角形中位線定理的作用:位置關(guān)系:可以證明兩條直線平行。數(shù)量關(guān)系:可以證明線段的倍分關(guān)系。常用結(jié)論:任一個三角形都有三條中位線,由此有:結(jié)論1:三條中位線組成一個三角形,其周長為原三角形周長的一半。結(jié)論2:三條中位線將原三角形分割成四個全等的三角形。結(jié)論3:三條中位線將原三角形劃分出三個面積相等的平行四邊形。結(jié)論4:三角形一條中線和與它相交的中位線互相平分。結(jié)論5:三角形中任意兩條中位線的夾角與這夾角所對的三角形的頂角相等第十、十二章 分式與二次根式考點、分式1、分式的概念:一般地,用A、B表示

18、兩個整式,AB就可以表示成的形式,如果B中含有字母,式子就叫做分式。其中,A叫做分式的分子,B叫做分式的分母。分式和整式通稱為有理式。2、分式的性質(zhì)(1)分式的基本性質(zhì):分式的分子和分母都乘以(或除以)同一個不等于零的整式,分式的值不變。(2)分式的變號法則:分式的分子、分母與分式本身的符號,改變其中任何兩個,分式的值不變。3、分式的運算法則 考點、二次根式1、二次根式:式子叫做二次根式,二次根式必須滿足:含有二次根號“”;被開方數(shù)a必須是非負(fù)數(shù)。2、最簡二次根式若二次根式滿足:被開方數(shù)的因數(shù)是整數(shù),因式是整式;被開方數(shù)中不含能開得盡方的因數(shù)或因式,這樣的二次根式叫做最簡二次根式?;胃綖樽詈喍胃降姆椒ê筒襟E:(1)如果被開方數(shù)是分?jǐn)?shù)(包括小數(shù))或分式,先利用商的算數(shù)平方根的性質(zhì)把它寫成分式的形式,然后利用分母有理化進(jìn)行化簡。(2)如果被開方數(shù)是整數(shù)或整式,先將他們分解因數(shù)或因式,然后把能開得盡方的因數(shù)或因式開出來。3、同類二次根式:幾個二次根式化成最簡二次根式以后,如果被開方數(shù)相同,這幾個二次根式叫做同類二次根

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論